-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathimageread.py
58 lines (45 loc) · 1.39 KB
/
imageread.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import matplotlib.pyplot as plt
import skimage.io
import skimage.transform
import cv2
import os
from keras.utils import np_utils
def normalized(rgb):
#return rgb/255.0
norm=np.zeros((rgb.shape[0], rgb.shape[1], 3),np.float32)
b=rgb[:,:,0]
g=rgb[:,:,1]
r=rgb[:,:,2]
norm[:,:,0]=b/255.0
norm[:,:,1]=g/255.0
norm[:,:,2]=r/255.0
return norm
def one_hot(rgb):
# return one hot vector of mask
b=rgb[:,:,0]
label = b/255.0
#label = np_utils.to_categorical(label.flatten().astype(int), 2)
#label = label.reshape(rgb.shape[0],rgb.shape[1],2)
return label
def labelread(i):
x_shape = 400
y_shape = 400
img = cv2.imread("data/masks/masks_img"+str(i+1)+".tif")
img = cv2.resize(img,(400,400))
img = one_hot(img)
img = np.stack([img])
#img = np.transpose(img,[2,0,1])
y = np_utils.to_categorical(img.flatten().astype(int), 2)
y = y.reshape(1, 400, 400,2)
#img = np.transpose(img,[2,0,1])
return y
def imageread(i):
x_shape = 400
y_shape = 400
img = skimage.io.imread("data/tiles/tiles_img"+str(i+1)+".tif")
img = skimage.transform.resize(img,(x_shape,y_shape))
#img = normalized(img)
img = np.stack([img])
#img = np.transpose(img,[2,0,1])
return img