-
Notifications
You must be signed in to change notification settings - Fork 165
/
euler_angles_utils.py
116 lines (100 loc) · 4.91 KB
/
euler_angles_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import cv2
import numpy as np
import math
def calculate_pitch_yaw_roll(landmarks_2D ,cam_w=256, cam_h=256,radians=False):
""" Return the the pitch yaw and roll angles associated with the input image.
@param radians When True it returns the angle in radians, otherwise in degrees.
"""
c_x = cam_w/2
c_y = cam_h/2
f_x = c_x / np.tan(60/2 * np.pi / 180)
f_y = f_x
#Estimated camera matrix values.
camera_matrix = np.float32([[f_x, 0.0, c_x],
[0.0, f_y, c_y],
[0.0, 0.0, 1.0]])
camera_distortion = np.float32([0.0, 0.0, 0.0, 0.0, 0.0])
#The dlib shape predictor returns 68 points, we are interested only in a few of those
# TRACKED_POINTS = [17, 21, 22, 26, 36, 39, 42, 45, 31, 35, 48, 54, 57, 8]
#wflw(98 landmark) trached points
# TRACKED_POINTS = [33, 38, 50, 46, 60, 64, 68, 72, 55, 59, 76, 82, 85, 16]
#X-Y-Z with X pointing forward and Y on the left and Z up.
#The X-Y-Z coordinates used are like the standard
# coordinates of ROS (robotic operative system)
#OpenCV uses the reference usually used in computer vision:
#X points to the right, Y down, Z to the front
LEFT_EYEBROW_LEFT = [6.825897, 6.760612, 4.402142]
LEFT_EYEBROW_RIGHT = [1.330353, 7.122144, 6.903745]
RIGHT_EYEBROW_LEFT = [-1.330353, 7.122144, 6.903745]
RIGHT_EYEBROW_RIGHT= [-6.825897, 6.760612, 4.402142]
LEFT_EYE_LEFT = [5.311432, 5.485328, 3.987654]
LEFT_EYE_RIGHT = [1.789930, 5.393625, 4.413414]
RIGHT_EYE_LEFT = [-1.789930, 5.393625, 4.413414]
RIGHT_EYE_RIGHT= [-5.311432, 5.485328, 3.987654]
NOSE_LEFT = [2.005628, 1.409845, 6.165652]
NOSE_RIGHT = [-2.005628, 1.409845, 6.165652]
MOUTH_LEFT = [2.774015, -2.080775, 5.048531]
MOUTH_RIGHT=[-2.774015, -2.080775, 5.048531]
LOWER_LIP= [0.000000, -3.116408, 6.097667]
CHIN = [0.000000, -7.415691, 4.070434]
landmarks_3D = np.float32( [LEFT_EYEBROW_LEFT,
LEFT_EYEBROW_RIGHT,
RIGHT_EYEBROW_LEFT,
RIGHT_EYEBROW_RIGHT,
LEFT_EYE_LEFT,
LEFT_EYE_RIGHT,
RIGHT_EYE_LEFT,
RIGHT_EYE_RIGHT,
NOSE_LEFT,
NOSE_RIGHT,
MOUTH_LEFT,
MOUTH_RIGHT,
LOWER_LIP,
CHIN])
#Return the 2D position of our landmarks
assert landmarks_2D is not None ,'landmarks_2D is None'
landmarks_2D = np.asarray(landmarks_2D,dtype=np.float32).reshape(-1,2)
#Applying the PnP solver to find the 3D pose
#of the head from the 2D position of the
#landmarks.
#retval - bool
#rvec - Output rotation vector that, together with tvec, brings
#points from the world coordinate system to the camera coordinate system.
#tvec - Output translation vector. It is the position of the world origin (SELLION) in camera co-ords
retval, rvec, tvec = cv2.solvePnP(landmarks_3D,
landmarks_2D,
camera_matrix,
camera_distortion)
#Get as input the rotational vector
#Return a rotational matrix
rmat, _ = cv2.Rodrigues(rvec)
pose_mat = cv2.hconcat((rmat,tvec))
#euler_angles contain (pitch, yaw, roll)
# euler_angles = cv2.DecomposeProjectionMatrix(projMatrix=rmat, cameraMatrix=self.camera_matrix, rotMatrix, transVect, rotMatrX=None, rotMatrY=None, rotMatrZ=None)
_, _, _, _, _, _,euler_angles = cv2.decomposeProjectionMatrix(pose_mat)
pitch,yaw,roll =map(lambda temp:temp[0],euler_angles)
return pitch,yaw,roll
# head_pose = [ rmat[0,0], rmat[0,1], rmat[0,2], tvec[0],
# rmat[1,0], rmat[1,1], rmat[1,2], tvec[1],
# rmat[2,0], rmat[2,1], rmat[2,2], tvec[2],
# 0.0, 0.0, 0.0, 1.0 ]
#print(head_pose) #TODO remove this line
# return self.rotationMatrixToEulerAngles(rmat)
# Calculates rotation matrix to euler angles
# The result is the same as MATLAB except the order
# of the euler angles ( x and z are swapped ).
def rotationMatrixToEulerAngles(R) :
#assert(isRotationMatrix(R))
#To prevent the Gimbal Lock it is possible to use
#a threshold of 1e-6 for discrimination
sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
singular = sy < 1e-6
if not singular :
x = math.atan2(R[2,1] , R[2,2])
y = math.atan2(-R[2,0], sy)
z = math.atan2(R[1,0], R[0,0])
else :
x = math.atan2(-R[1,2], R[1,1])
y = math.atan2(-R[2,0], sy)
z = 0
return np.array([x, y, z])