-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata_vis.py
68 lines (54 loc) · 1.84 KB
/
data_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import pandas
import matplotlib.pyplot as plt
import re
def plot_ds(ax, wls, xdata, ydata):
'''
Plot dataset
ax: matplotlib Axes3DSubplot
wls: Numpy ndarray: List of wavelength
xdata: Pandas DataFrame: Measurements
ydata: Pandas Series: Octane numbers
'''
wls_len = len(wls)
for idx, rdata in xdata.iterrows():
on = ydata[idx]
vals = rdata
on_ar = np.full(wls_len, on)
ax.plot(on_ar, wls, vals)
def main():
FILENAME = "octane.xlsx"
oct_df = pandas.read_excel(FILENAME)
FILENAME = "gasoline.csv"
gas_df = pandas.read_csv(FILENAME)
# Print a preview of the datasets
print(type(oct_df), np.shape(oct_df))
print(oct_df.loc[0:3,:])
print(type(gas_df), np.shape(gas_df))
print(gas_df.loc[0:3,:])
# Create the xdata y ydata (list of wavelengths and octane numbers)
oct_wls = np.array([ int(i) for i in oct_df.columns.values[2:]])
oct_xdata = oct_df.loc[:,'1100':]
oct_ydata = oct_df['Octane number']
reg = re.compile('([0-9]+)')
gas_wls = np.array([ int(reg.findall(i)[0]) for i in gas_df.columns.values[1:]])
gas_xdata = gas_df.loc[:,'NIR.900 nm':]
gas_ydata = gas_df['octane']
# Create a figure with two axes for 3D plotting
f,(ax,ax1) = plt.subplots(1, 2, subplot_kw=dict(projection='3d'))
# Plot datasets and put some labels
plot_ds(ax, oct_wls, oct_xdata, oct_ydata)
ax.set_title("Octane Dataset")
ax.set_xlabel("Octane number")
ax.set_ylabel("Wavelength")
ax.set_zlabel("Value")
plot_ds(ax1, gas_wls, gas_xdata, gas_ydata)
ax1.set_title("Gasoline Dataset")
ax1.set_xlabel("Octane number")
ax1.set_ylabel("Wavelength")
ax1.set_zlabel("Value")
plt.show()
if __name__ == "__main__":
main()