Skip to content
This repository has been archived by the owner on Oct 17, 2023. It is now read-only.

the results of loss are not the same with yours #17

Open
lyancynthia opened this issue Oct 23, 2021 · 1 comment
Open

the results of loss are not the same with yours #17

lyancynthia opened this issue Oct 23, 2021 · 1 comment

Comments

@lyancynthia
Copy link

hi,

I run the lightgcn using the command you provided in readme file 'cd code && python main.py --decay=1e-4 --lr=0.001 --layer=3 --seed=2020 --dataset="gowalla" --topks="[20]" --recdim=64'

However, my loss results in 5/116 epoch are not the same with yours.

The log of mine:
(deeplearning-pytorch) yandeMacBook-Pro:LightGCN-PyTorch-master yan$ cd code && python main.py --decay=1e-4 --lr=0.001 --layer=3 --seed=2020 --dataset="gowalla" --topks="[20]" --recdim=64
Cpp extension not loaded

SEED: 2020
loading [../data/gowalla]
810128 interactions for training
217242 interactions for testing
gowalla Sparsity : 0.0008396216228570436
gowalla is ready to go
===========config================
{'A_n_fold': 100,
'A_split': False,
'bigdata': False,
'bpr_batch_size': 2048,
'decay': 0.0001,
'dropout': 0,
'keep_prob': 0.6,
'latent_dim_rec': 64,
'lightGCN_n_layers': 3,
'lr': 0.001,
'multicore': 0,
'pretrain': 0,
'test_u_batch_size': 100}
cores for test: 6
comment: lgn
tensorboard: 1
LOAD: 0
Weight path: ./checkpoints
Test Topks: [20]
using bpr loss
===========end===================
use NORMAL distribution initilizer
loading adjacency matrix
successfully loaded...
don't split the matrix
lgn is already to go(dropout:0)
load and save to /Users/yan/PycharmProjects/LightGCN-PyTorch-master/code/checkpoints/lgn-gowalla-3-64.pth.tar
[TEST]
{'precision': array([0.00018755]), 'recall': array([0.00053749]), 'ndcg': array([0.00040836])}
EPOCH[1/1000] loss0.545-|Sample:10.23|
^Z
[1]+ Stopped python main.py --decay=1e-4 --lr=0.001 --layer=3 --seed=2020 --dataset="gowalla" --topks="[20]" --recdim=64
(deeplearning-pytorch) yandeMacBook-Pro:code yan$ cd code && python main.py --decay=1e-4 --lr=0.001 --layer=3 --seed=2020 --dataset="gowalla" --topks="[20]" --recdim=64
bash: cd: code: No such file or directory
(deeplearning-pytorch) yandeMacBook-Pro:code yan$ python main.py --decay=1e-4 --lr=0.001 --layer=3 --seed=2020 --dataset="gowalla" --topks="[20]" --recdim=64
xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun
Cpp extension not loaded
SEED: 2020
loading [../data/gowalla]
810128 interactions for training
217242 interactions for testing
gowalla Sparsity : 0.0008396216228570436
gowalla is ready to go
===========config================
{'A_n_fold': 100,
'A_split': False,
'bigdata': False,
'bpr_batch_size': 2048,
'decay': 0.0001,
'dropout': 0,
'keep_prob': 0.6,
'latent_dim_rec': 64,
'lightGCN_n_layers': 3,
'lr': 0.001,
'multicore': 0,
'pretrain': 0,
'test_u_batch_size': 100}
cores for test: 6
comment: lgn
tensorboard: 1
LOAD: 0
Weight path: ./checkpoints
Test Topks: [20]
using bpr loss
===========end===================
use NORMAL distribution initilizer
loading adjacency matrix
successfully loaded...
don't split the matrix
lgn is already to go(dropout:0)
load and save to /Users/yan/PycharmProjects/LightGCN-PyTorch-master/code/checkpoints/lgn-gowalla-3-64.pth.tar
[TEST]
{'precision': array([0.00018755]), 'recall': array([0.00053749]), 'ndcg': array([0.00040836])}
EPOCH[1/1000] loss0.545-|Sample:11.30|
EPOCH[2/1000] loss0.240-|Sample:9.95|
EPOCH[3/1000] loss0.163-|Sample:10.90|
EPOCH[4/1000] loss0.131-|Sample:9.84|
EPOCH[5/1000] loss0.112-|Sample:9.75|
EPOCH[6/1000] loss0.099-|Sample:9.67|
EPOCH[7/1000] loss0.090-|Sample:9.56|
EPOCH[8/1000] loss0.084-|Sample:9.70|
EPOCH[9/1000] loss0.078-|Sample:9.62|
EPOCH[10/1000] loss0.074-|Sample:9.80|
[TEST]
{'precision': array([0.03665852]), 'recall': array([0.12015017]), 'ndcg': array([0.10065857])}
EPOCH[11/1000] loss0.071-|Sample:9.76|
EPOCH[12/1000] loss0.068-|Sample:9.65|
EPOCH[13/1000] loss0.065-|Sample:9.86|
EPOCH[14/1000] loss0.064-|Sample:9.80|
EPOCH[15/1000] loss0.061-|Sample:9.60|
EPOCH[16/1000] loss0.059-|Sample:9.76|
EPOCH[17/1000] loss0.057-|Sample:9.61|
EPOCH[18/1000] loss0.055-|Sample:9.71|
EPOCH[19/1000] loss0.054-|Sample:9.69|
EPOCH[20/1000] loss0.052-|Sample:9.68|
[TEST]
{'precision': array([0.03968451]), 'recall': array([0.13136514]), 'ndcg': array([0.10890214])}
EPOCH[21/1000] loss0.052-|Sample:9.80|
EPOCH[22/1000] loss0.050-|Sample:9.57|
EPOCH[23/1000] loss0.049-|Sample:9.58|
EPOCH[24/1000] loss0.048-|Sample:9.65|
EPOCH[25/1000] loss0.047-|Sample:9.64|
EPOCH[26/1000] loss0.046-|Sample:9.71|
EPOCH[27/1000] loss0.045-|Sample:9.51|
EPOCH[28/1000] loss0.044-|Sample:9.67|
EPOCH[29/1000] loss0.043-|Sample:9.55|
EPOCH[30/1000] loss0.042-|Sample:9.68|
[TEST]
{'precision': array([0.04201554]), 'recall': array([0.13925258]), 'ndcg': array([0.1155325])}
EPOCH[31/1000] loss0.042-|Sample:9.78|
EPOCH[32/1000] loss0.041-|Sample:9.52|
EPOCH[33/1000] loss0.040-|Sample:9.69|
EPOCH[34/1000] loss0.039-|Sample:9.62|
EPOCH[35/1000] loss0.039-|Sample:9.78|
EPOCH[36/1000] loss0.038-|Sample:9.61|
EPOCH[37/1000] loss0.037-|Sample:9.61|
EPOCH[38/1000] loss0.037-|Sample:9.65|
EPOCH[39/1000] loss0.036-|Sample:9.71|
EPOCH[40/1000] loss0.036-|Sample:9.70|
[TEST]
{'precision': array([0.04349923]), 'recall': array([0.14439921]), 'ndcg': array([0.12029571])}
EPOCH[41/1000] loss0.035-|Sample:9.65|
EPOCH[42/1000] loss0.035-|Sample:9.66|
EPOCH[43/1000] loss0.034-|Sample:9.59|
EPOCH[44/1000] loss0.034-|Sample:9.80|
EPOCH[45/1000] loss0.033-|Sample:9.55|
EPOCH[46/1000] loss0.033-|Sample:9.63|
EPOCH[47/1000] loss0.032-|Sample:9.67|
EPOCH[48/1000] loss0.032-|Sample:9.68|
EPOCH[49/1000] loss0.032-|Sample:9.68|
EPOCH[50/1000] loss0.031-|Sample:9.54|
[TEST]
{'precision': array([0.04473173]), 'recall': array([0.14867354]), 'ndcg': array([0.1240188])}
EPOCH[51/1000] loss0.031-|Sample:9.90|
EPOCH[52/1000] loss0.030-|Sample:9.55|
EPOCH[53/1000] loss0.030-|Sample:9.66|
EPOCH[54/1000] loss0.030-|Sample:9.58|
EPOCH[55/1000] loss0.030-|Sample:9.71|
EPOCH[56/1000] loss0.029-|Sample:9.63|
EPOCH[57/1000] loss0.030-|Sample:9.71|
EPOCH[58/1000] loss0.028-|Sample:9.70|
EPOCH[59/1000] loss0.029-|Sample:9.51|
EPOCH[60/1000] loss0.028-|Sample:9.84|
[TEST]
{'precision': array([0.04583194]), 'recall': array([0.15272959]), 'ndcg': array([0.12772477])}
EPOCH[61/1000] loss0.028-|Sample:9.78|
EPOCH[62/1000] loss0.028-|Sample:9.89|
EPOCH[63/1000] loss0.027-|Sample:9.51|
EPOCH[64/1000] loss0.027-|Sample:9.66|
EPOCH[65/1000] loss0.027-|Sample:9.62|
EPOCH[66/1000] loss0.027-|Sample:9.57|
EPOCH[67/1000] loss0.026-|Sample:9.66|
EPOCH[68/1000] loss0.026-|Sample:9.48|
EPOCH[69/1000] loss0.026-|Sample:9.66|
EPOCH[70/1000] loss0.026-|Sample:9.59|
[TEST]
{'precision': array([0.04668598]), 'recall': array([0.15544668]), 'ndcg': array([0.13033168])}
EPOCH[71/1000] loss0.026-|Sample:9.80|
EPOCH[72/1000] loss0.025-|Sample:9.57|
EPOCH[73/1000] loss0.025-|Sample:9.68|
EPOCH[74/1000] loss0.025-|Sample:9.62|
EPOCH[75/1000] loss0.024-|Sample:9.68|
EPOCH[76/1000] loss0.024-|Sample:9.60|
EPOCH[77/1000] loss0.024-|Sample:9.53|
EPOCH[78/1000] loss0.023-|Sample:9.73|
EPOCH[79/1000] loss0.023-|Sample:9.55|
EPOCH[80/1000] loss0.023-|Sample:9.76|
[TEST]
{'precision': array([0.0476472]), 'recall': array([0.15882603]), 'ndcg': array([0.13296691])}
EPOCH[81/1000] loss0.023-|Sample:9.70|
EPOCH[82/1000] loss0.023-|Sample:9.70|
EPOCH[83/1000] loss0.023-|Sample:9.74|
EPOCH[84/1000] loss0.023-|Sample:9.70|
EPOCH[85/1000] loss0.023-|Sample:9.55|
EPOCH[86/1000] loss0.022-|Sample:9.67|
EPOCH[87/1000] loss0.022-|Sample:9.59|
EPOCH[88/1000] loss0.022-|Sample:9.79|
EPOCH[89/1000] loss0.022-|Sample:9.60|
EPOCH[90/1000] loss0.022-|Sample:9.64|
[TEST]
{'precision': array([0.04831536]), 'recall': array([0.16129594]), 'ndcg': array([0.13489544])}
EPOCH[91/1000] loss0.022-|Sample:9.84|
EPOCH[92/1000] loss0.021-|Sample:9.64|
EPOCH[93/1000] loss0.021-|Sample:9.52|
EPOCH[94/1000] loss0.021-|Sample:9.63|
EPOCH[95/1000] loss0.021-|Sample:9.58|
EPOCH[96/1000] loss0.021-|Sample:9.63|
EPOCH[97/1000] loss0.021-|Sample:9.48|
EPOCH[98/1000] loss0.021-|Sample:9.70|
EPOCH[99/1000] loss0.021-|Sample:9.55|
EPOCH[100/1000] loss0.021-|Sample:9.62|
[TEST]
{'precision': array([0.04904716]), 'recall': array([0.16339545]), 'ndcg': array([0.13703003])}
EPOCH[101/1000] loss0.020-|Sample:9.81|
EPOCH[102/1000] loss0.020-|Sample:9.93|
EPOCH[103/1000] loss0.020-|Sample:9.67|
EPOCH[104/1000] loss0.020-|Sample:9.55|
EPOCH[105/1000] loss0.020-|Sample:9.79|
EPOCH[106/1000] loss0.020-|Sample:9.56|
EPOCH[107/1000] loss0.020-|Sample:9.69|
EPOCH[108/1000] loss0.019-|Sample:9.65|
EPOCH[109/1000] loss0.019-|Sample:9.70|
EPOCH[110/1000] loss0.019-|Sample:9.69|
[TEST]
{'precision': array([0.04963829]), 'recall': array([0.16556552]), 'ndcg': array([0.13885787])}
EPOCH[111/1000] loss0.019-|Sample:9.71|
EPOCH[112/1000] loss0.019-|Sample:9.70|
EPOCH[113/1000] loss0.019-|Sample:9.61|
EPOCH[114/1000] loss0.019-|Sample:9.73|
EPOCH[115/1000] loss0.019-|Sample:9.61|
EPOCH[116/1000] loss0.019-|Sample:9.62|
EPOCH[117/1000] loss0.019-|Sample:9.68|
EPOCH[118/1000] loss0.018-|Sample:9.61|
EPOCH[119/1000] loss0.018-|Sample:9.62|
EPOCH[120/1000] loss0.018-|Sample:9.41|
[TEST]
{'precision': array([0.05002344]), 'recall': array([0.1664573]), 'ndcg': array([0.13995462])}
EPOCH[121/1000] loss0.018-|Sample:9.87|
EPOCH[122/1000] loss0.018-|Sample:9.54|
EPOCH[123/1000] loss0.018-|Sample:9.70|
EPOCH[124/1000] loss0.018-|Sample:9.57|
EPOCH[125/1000] loss0.018-|Sample:9.70|
EPOCH[126/1000] loss0.018-|Sample:9.67|
EPOCH[127/1000] loss0.018-|Sample:9.55|
EPOCH[128/1000] loss0.018-|Sample:9.63|
EPOCH[129/1000] loss0.018-|Sample:9.50|
EPOCH[130/1000] loss0.018-|Sample:9.69|
[TEST]
{'precision': array([0.05054257]), 'recall': array([0.16798868]), 'ndcg': array([0.14152368])}
EPOCH[131/1000] loss0.017-|Sample:9.71|
EPOCH[132/1000] loss0.017-|Sample:9.63|
EPOCH[133/1000] loss0.017-|Sample:9.55|
EPOCH[134/1000] loss0.017-|Sample:9.62|
EPOCH[135/1000] loss0.017-|Sample:9.67|
EPOCH[136/1000] loss0.017-|Sample:9.62|
EPOCH[137/1000] loss0.017-|Sample:9.68|
EPOCH[138/1000] loss0.017-|Sample:9.45|
EPOCH[139/1000] loss0.017-|Sample:9.64|
EPOCH[140/1000] loss0.017-|Sample:9.52|
...

@gusye1234
Copy link
Owner

Hi!
Since this implementation is changed due to some pull requests, the same random seed can't ensure you can have the same results like the ones in README.
If you like to fully recreate the results, maybe rolling back the git history to the very beginning can help.

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants