DATA
├── awa2-lts
│ ├── image_list
│ │ ├── Original_train.txt
│ │ ├── Original_val.txt
│ │ ├── Original_test.txt
│ │ ├── Hayao_train.txt
│ │ ...
│ ├── embedding
│ │ ├── ...
│ ├── original
│ │ ├── antelope
│ │ │ ├── antelope_00001.jpg
│ │ │ ├── antelope_00002.jpg
│ │ │ ...
│ │ ├── bat
│ │ ├── ...
│ ├── hayao
│ │ ├── antelope
│ │ │ ├── antelope_00001_hayao.jpg
│ │ │ ├── antelope_00002_hayao.jpg
│ │ │ ...
│ │ ...
│ ├── shinkai
│ │ ├── antelope
│ │ ...
│ ├── ukiyoe
│ │ ├── antelope
│ │ ...
│ └── vangogh
│ ├── antelope
│ ...
└── imagenet-lts
├── image_list
│ ├── ...
├── embedding
│ ├── ...
├── original
│ ├── ILSVRC2012_val_00048700.JPEG
│ ...
├── hayao
│ ├── ILSVRC2012_val_00048700_hayao.jpg
│ ...
├── shinkai
│ ├── ...
├── ukiyoe
│ ├── ...
└── vangogh
├── ...
Firstly, download the original AWA2 and ImageNet datasets. And put it to the DATA/
structured as above
-
AWA2
- Download from here.
- Put it to the
DATA/awa2/original
-
ImageNet-LT
- Download ImageNet_2014, and the ImageNet-LT file list.
- Based on the filelist, extract images from
ImageNet_LT_train.txt
,ImageNet_LT_test.txt
,ImageNet_LT_val.txt
, and put them toDATA/imagenet/original
We use CartoonGAN for Hayao and Shinkai styles, and CycleGAN for Vangogh and Ukiyoe styles
Given the original sample with the name X.jpg
, its corresponding style-transferred images are named as X_hayao.jpg
, X_vangogh.jpg
, X_shinkai.jpg
, X_ukiyoe.jpg
Change REPO with this repo path, DATA with DATA folder path
Hayao and Sinkai
git clone https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch
cd CartoonGAN-Test-Pytorch-Torch
source pretrained_model/download_pth.sh
cp REPO/dataset/transfer_hs.py .
python transfer_hs.py --dataset awa2 --datapath DATA --style Hayao
Vangogh and Ukiyoe
git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
cd pytorch-CycleGAN-and-pix2pix
source ./scripts/download_cyclegan_model.sh style_vangogh
source ./scripts/download_cyclegan_model.sh style_ukiyoe
cp REPO/dataset/transfer_vu.py .
python transfer_vu.py --dataset imagenet --datapath DATA --style vangogh --dataroot . --name style_vangogh --model test
We provide the pre-defined train/validation/test index files to benchmark related algorithms.
Download from here and put to corresponding sub-folders under DATA/
Download the embeddings utilized in our experiments. Download from here and put to corresponding sub-folders under DATA/