-
Notifications
You must be signed in to change notification settings - Fork 10
/
test.py
260 lines (216 loc) · 10.1 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import print_function, absolute_import
import os
import gc
import sys
import time
import math
import h5py
import scipy
import datetime
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import utils.data_manager as data_manager
from utils.video_loader import VideoDataset, ImageDataset
import transforms.spatial_transforms as ST
import transforms.temporal_transforms as TT
import torchvision.transforms as T
import models
from utils.utils import AverageMeter, Logger, save_checkpoint
from utils.eval_metrics import evaluate
parser = argparse.ArgumentParser(description='Testing using all frames')
# Datasets
parser.add_argument('--root', type=str, default='/data/datasets/')
parser.add_argument('-d', '--dataset', type=str, default='mars',
choices=data_manager.get_names())
parser.add_argument('-j', '--workers', default=4, type=int)
parser.add_argument('--height', type=int, default=256)
parser.add_argument('--width', type=int, default=128)
# Augment
parser.add_argument('--test_frames', default=32, type=int, help='frames/clip for test')
# Optimization options
parser.add_argument('--test_batch', default=1, type=int, help="has to be 1")
parser.add_argument('--img_test_batch', default=128, type=int)
# Architecture
parser.add_argument('--vid_arch', type=str, default='vid_nonlocalresnet50')
parser.add_argument('--img_arch', type=str, default='img_resnet50')
# Miscs
parser.add_argument('--resume', type=str, default='log/best_model.pth.tar', metavar='PATH')
parser.add_argument('--save_dir', type=str, default='log')
parser.add_argument('--gpu_devices', default='0', type=str)
args = parser.parse_args()
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
print(torch.cuda.device_count())
use_gpu = torch.cuda.is_available()
sys.stdout = Logger(osp.join(args.save_dir, 'log_test.txt'))
print("==========\nArgs:{}\n==========".format(args))
print("Initializing dataset {}".format(args.dataset))
dataset = data_manager.init_dataset(name=args.dataset, root=args.root)
# Data augmentation
spatial_transform_test = ST.Compose([
ST.Scale((args.height, args.width), interpolation=3),
ST.ToTensor(),
ST.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
temporal_transform_test = None
transform_test_img = T.Compose([
T.Resize((args.height, args.width), interpolation=3),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
pin_memory = True if use_gpu else False
queryloader = DataLoader(
VideoDataset(dataset.query, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=0,
pin_memory=pin_memory, drop_last=False
)
galleryloader = DataLoader(
VideoDataset(dataset.gallery, spatial_transform=spatial_transform_test, temporal_transform=temporal_transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=0,
pin_memory=pin_memory, drop_last=False
)
queryimgloader = DataLoader(
ImageDataset(dataset.query_img, transform=transform_test_img),
batch_size=args.img_test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False
)
galleryimgloader = DataLoader(
ImageDataset(dataset.gallery_img, transform=transform_test_img),
batch_size=args.img_test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False
)
print("Initializing model: {} and {}".format(args.vid_arch, args.img_arch))
vid_model = models.init_model(name=args.vid_arch)
img_model = models.init_model(name=args.img_arch)
print("Video model size: {:.5f}M".format(sum(p.numel() for p in vid_model.parameters())/1000000.0))
print("Image model size: {:.5f}M".format(sum(p.numel() for p in img_model.parameters())/1000000.0))
print("Loading checkpoint from '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
vid_model.load_state_dict(checkpoint['vid_model_state_dict'])
img_model.load_state_dict(checkpoint['img_model_state_dict'])
if use_gpu:
vid_model = vid_model.cuda()
img_model = img_model.cuda()
print("Evaluate")
with torch.no_grad():
test(vid_model, img_model, queryloader, galleryloader, queryimgloader, galleryimgloader, use_gpu)
def extract_vid_feature(model, vids, use_gpu):
n, c, f, h, w = vids.size()
assert(n == 1)
feat = torch.FloatTensor()
for i in range(math.ceil(f/args.test_frames)):
clip = vids[:, :, i*args.test_frames:(i+1)*args.test_frames, :, :]
if use_gpu:
clip = clip.cuda()
output = model(clip)
output = output.data.cpu()
feat = torch.cat((feat, output), 1)
feat = feat.mean(1)
return feat
def test(vid_model, img_model, queryloader, galleryloader, queryimgloader, galleryimgloader, use_gpu):
since = time.time()
vid_model.eval()
img_model.eval()
print("Extract video features")
vid_qf, vid_q_pids, vid_q_camids = [], [], []
for batch_idx, (vids, pids, camids) in enumerate(queryloader):
if (batch_idx+1)%1000==0 or (batch_idx+1)%len(queryloader)==0:
print("{}/{}".format(batch_idx+1, len(queryloader)))
vid_qf.append(extract_vid_feature(vid_model, vids, use_gpu).squeeze())
vid_q_pids.extend(pids)
vid_q_camids.extend(camids)
vid_qf = torch.stack(vid_qf)
vid_q_pids = np.asarray(vid_q_pids)
vid_q_camids = np.asarray(vid_q_camids)
print("Extracted features for query set, obtained {} matrix".format(vid_qf.shape))
vid_gf, vid_g_pids, vid_g_camids = [], [], []
for batch_idx, (vids, pids, camids) in enumerate(galleryloader):
if (batch_idx + 1) % 1000==0 or (batch_idx+1)%len(galleryloader)==0:
print("{}/{}".format(batch_idx+1, len(galleryloader)))
vid_gf.append(extract_vid_feature(vid_model, vids, use_gpu).squeeze())
vid_g_pids.extend(pids)
vid_g_camids.extend(camids)
vid_gf = torch.stack(vid_gf)
vid_g_pids = np.asarray(vid_g_pids)
vid_g_camids = np.asarray(vid_g_camids)
if args.dataset == 'mars':
# gallery set must contain query set, otherwise 140 query imgs will not have ground truth.
vid_gf = torch.cat((vid_qf, vid_gf), 0)
vid_g_pids = np.append(vid_q_pids, vid_g_pids)
vid_g_camids = np.append(vid_q_camids, vid_g_camids)
print("Extracted features for gallery set, obtained {} matrix".format(vid_gf.shape))
print("Extract image features")
img_qf, img_q_pids, img_q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryimgloader):
if use_gpu:
imgs = imgs.cuda()
feat = img_model(imgs).data.cpu()
img_qf.append(feat)
img_q_pids.extend(pids)
img_q_camids.extend(camids)
img_qf = torch.cat(img_qf, 0)
img_q_pids = np.asarray(img_q_pids)
img_q_camids = np.asarray(img_q_camids)
print("Extracted features for query set, obtained {} matrix".format(img_qf.shape))
img_gf, img_g_pids, img_g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(galleryimgloader):
if use_gpu:
imgs = imgs.cuda()
feat = img_model(imgs).data.cpu()
img_gf.append(feat)
img_g_pids.extend(pids)
img_g_camids.extend(camids)
img_gf = torch.cat(img_gf, 0)
img_g_pids = np.asarray(img_g_pids)
img_g_camids = np.asarray(img_g_camids)
if args.dataset == 'mars':
# gallery set must contain query set, otherwise 140 query imgs will not have ground truth.
img_gf = torch.cat((img_qf, img_gf), 0)
img_g_pids = np.append(img_q_pids, img_g_pids)
img_g_camids = np.append(img_q_camids, img_g_camids)
print("Extracted features for gallery set, obtained {} matrix".format(img_gf.shape))
time_elapsed = time.time() - since
print('Extracting features complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print("Computing distance matrix")
m, n = vid_qf.size(0), vid_gf.size(0)
img_distmat = torch.zeros((m,n))
vid_distmat = torch.zeros((m,n))
i2v_distmat = torch.zeros((m,n))
v2i_distmat = torch.zeros((m,n))
img_q_norm = torch.norm(img_qf, p=2, dim=1, keepdim=True)
img_g_norm = torch.norm(img_gf, p=2, dim=1, keepdim=True)
vid_q_norm = torch.norm(vid_qf, p=2, dim=1, keepdim=True)
vid_g_norm = torch.norm(vid_gf, p=2, dim=1, keepdim=True)
img_qf = img_qf.div(img_q_norm.expand_as(img_qf))
img_gf = img_gf.div(img_g_norm.expand_as(img_gf))
vid_qf = vid_qf.div(vid_q_norm.expand_as(vid_qf))
vid_gf = vid_gf.div(vid_g_norm.expand_as(vid_gf))
for i in range(m):
img_distmat[i] = - torch.mm(img_qf[i:i+1], img_gf.t())
vid_distmat[i] = - torch.mm(vid_qf[i:i+1], vid_gf.t())
i2v_distmat[i] = - torch.mm(img_qf[i:i+1], vid_gf.t())
v2i_distmat[i] = - torch.mm(vid_qf[i:i+1], img_gf.t())
img_distmat = img_distmat.numpy()
vid_distmat = vid_distmat.numpy()
i2v_distmat = i2v_distmat.numpy()
v2i_distmat = v2i_distmat.numpy()
print('image to image')
cmc, mAP = evaluate(img_distmat, img_q_pids, img_g_pids, img_q_camids, img_g_camids)
print('top1:{:.2%} top5:{:.2%} top10:{:.2%} mAP:{:.2%}'.format(cmc[0],cmc[4],cmc[9],mAP))
print('video to video')
cmc, mAP = evaluate(vid_distmat, vid_q_pids, vid_g_pids, vid_q_camids, vid_g_camids)
print('top1:{:.2%} top5:{:.2%} top10:{:.2%} mAP:{:.2%}'.format(cmc[0],cmc[4],cmc[9],mAP))
print('video to image')
cmc, mAP = evaluate(v2i_distmat, vid_q_pids, img_g_pids, vid_q_camids, img_g_camids)
print('top1:{:.2%} top5:{:.2%} top10:{:.2%} mAP:{:.2%}'.format(cmc[0],cmc[4],cmc[9],mAP))
print('image to video')
cmc, mAP = evaluate(i2v_distmat, img_q_pids, vid_g_pids, img_q_camids, vid_g_camids)
print('top1:{:.2%} top5:{:.2%} top10:{:.2%} mAP:{:.2%}'.format(cmc[0],cmc[4],cmc[9],mAP))
return cmc[0]
if __name__ == '__main__':
main()