-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathall_perceptions.py
executable file
·614 lines (520 loc) · 24.9 KB
/
all_perceptions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import numpy as np
import copy, math, time, cv2, threading, Queue, os
from multiprocessing import Process, Pipe
from multiprocessing import Queue as mQueue
from common import resize_images
from collections import defaultdict
from scipy.ndimage.interpolation import zoom
class Perceptions:
@staticmethod
def worker(initializer, params, conn):
print("begin initialization")
if initializer == "seg_abn":
os.environ["CUDA_VISIBLE_DEVICES"] = str(params["GPU"])
params["GPU"] = 0
from inplace_abn.interface_abn import SegmenterABN
initializer = SegmenterABN
elif initializer == "0intersection":
from intersection_detector.interface_intersection import Intersection
initializer = Intersection
elif initializer == 'seg':
from LinkNet.interface_segmentation import Segmenter
initializer = Segmenter
elif initializer == "drivable_area":
from drivable_area.interface_drivable_area import DrivableArea
initializer = DrivableArea
instance = initializer(**params)
print(initializer, "initialization finished")
while True:
# there should be a communication protocol
cmd, data = conn.recv()
# have the multiple combinations to avoid extra communications
if cmd == "compute":
start = time.time()
#print("start compute on ", initializer, start)
logit = instance.compute(data)
conn.send(logit)
endtime = time.time()
#print("end compute on ", initializer, endtime, "using:", (endtime-start)*1000, " ms")
elif cmd == "visualize":
# pred, ibatch
viz = instance.visualize(data[0], data[1])
conn.send(viz)
elif cmd == "visualize_low_thresh":
# pred, ibatch
viz = instance.visualize_logits_low_thresh(data[0], data[1])
conn.send(viz)
elif cmd == "general":
func = getattr(instance, data[0])
output = func(**data[1])
conn.send(output)
else:
print("wrong command")
def rep_name(self, mode, i_replicate):
if i_replicate == 0:
return mode
else:
return mode + "_" + str(i_replicate)
def __init__(self,
det_COCO=True,
det_TL=True,
det_TS=True,
seg=True, add_lane_color=False,
depth=True,
seg_abn=False,
intersection=False,
drivable_area=False,
batch_size=1, # batch_size could also be a dict
gpu_assignment=[0,1],
compute_methods={},
viz_methods={},
num_replicates={},
path_config="path_jormungandr"):
'''
:param gpu_assignment: could be a list, where use round robin method, or could be a dict, that directly assign
:param compute_methods: could change the default compute methods, with a dict
'''
num_replicates = defaultdict(lambda: 1, num_replicates)
self.num_replicates = num_replicates
getattr(self, path_config)()
modalities = {"det_COCO": det_COCO,
"det_TL": det_TL,
"det_TS": det_TS,
"seg": seg,
"depth": depth,
"seg_abn": seg_abn,
"0intersection": intersection,
"drivable_area": drivable_area}
if isinstance(gpu_assignment, list):
out = {}
i = 0
for mode in sorted(modalities.keys()):
if modalities[mode]:
for irep in range(num_replicates[mode]):
mode_name_i = self.rep_name(mode, irep)
out[mode_name_i] = gpu_assignment[i % len(gpu_assignment)]
i += 1
gpu_assignment = out
for key in gpu_assignment:
gpu_assignment[key] = str(gpu_assignment[key])
if seg:
Segmenter = "seg"
else:
Segmenter = None
from monodepth.interface_depth import Depth
from yolo.interface_darknet import YoloDetector
if seg_abn:
SegmenterABN = "seg_abn"
else:
SegmenterABN = None
if intersection:
Intersection = "0intersection"
else:
Intersection = None
if drivable_area:
DrivableArea = "drivable_area"
else:
DrivableArea = None
interfaces = {"det_COCO": YoloDetector,
"det_TL": YoloDetector,
"det_TS": YoloDetector,
"seg": Segmenter,
"depth": Depth,
"seg_abn": SegmenterABN,
"0intersection": Intersection,
"drivable_area": DrivableArea}
self.instances = {}
self._batch_size = {}
self.all_modes = {}
self.channel_id = 0
self.processes = {}
for mode in sorted(modalities.keys()):
if modalities[mode]:
self.all_modes[mode] = True
for irep in range(num_replicates[mode]):
mode_name_i = self.rep_name(mode, irep)
# select which GPU to use
initializer = interfaces[mode]
gpu = gpu_assignment[mode_name_i]
print("Model ", mode, " replicate ", irep, " is using GPU ", gpu)
params = copy.deepcopy(self.paths[mode])
params.update({"GPU": gpu})
if isinstance(batch_size, dict):
params.update({"batch_size": batch_size[mode]})
self._batch_size[mode] = batch_size[mode]
else:
params.update({"batch_size": batch_size})
self._batch_size[mode] = batch_size
if mode in compute_methods:
params.update({"compute_method": compute_methods[mode]})
if mode in viz_methods:
params.update({"viz_method": viz_methods[mode]})
if mode == "det_COCO":
params.update({"prune_coco": True})
if mode == "seg" and add_lane_color:
params.update({"attach_lane_color": True})
parent_conn, child_conn = Pipe()
p = Process(target=self.worker, args=(initializer, params, child_conn))
p.start()
self.processes[mode_name_i] = p
if "det" in mode or "abn" in mode or "intersection" in mode:
print("sleeping to stable create det models", mode)
time.sleep(2)
self.instances[mode_name_i] = parent_conn
def path_jormungandr(self):
self.path_docker(codebase="/home/yang/code/aws/",
model_base="/home/yang/data/aws_data/models/",
monodepth_python_path="/shared/yang/software/monodepth")
def path_jormungandr_newseg(self):
self.path_jormungandr()
model_base = "/home/yang/data/aws_data/models/"
self.paths["seg"] = {"model_path": model_base + "seg_v2.net",
"mean_path": model_base + "seg_stat_v2.t7"}
def path_docker(self,
codebase="/root/aws/",
monodepth_python_path="/root/monodepth",
model_base = "/root/models/"):
self.paths = {}
if "root" in codebase:
suffix = ".docker"
else:
suffix = ""
self.paths["det_COCO"] = {"path_cfg": codebase+"coco_original/yolov3.cfg",
"path_weights": model_base + "COCO-yolov3.weights",
"path_meta": codebase+"coco_original/coco.data" + suffix}
self.paths["det_TL"] = {"path_cfg": codebase+"traffic_light/yolov3-TL.cfg.test",
"path_weights": model_base + "TrafficLight-yolov3-TL.backup",
"path_meta": codebase+"traffic_light/TL.data" + suffix}
self.paths["det_TS"] = {"path_cfg": codebase+"traffic_sign/yolov3-CL.cfg.test",
"path_weights": model_base + "TrafficSign-yolov3-CL.backup",
"path_meta": codebase+"traffic_sign/CL.data" + suffix}
self.paths["seg"] = {"model_path": model_base + "Segmentation-LinkNet-model-152.net",
"mean_path": model_base + "Segmentation_LinkNet_576_768.stat.t7"}
self.paths["depth"] = {"model_path": model_base + "model_city2eigen",
"python_path": monodepth_python_path}
self.paths["seg_abn"] = {"model_path": model_base + "abn_wideres38.pth.tar",}
self.paths["0intersection"] = {
"model_path": "TODO",
"mean_path": "TODO"}
self.paths["drivable_area"] = {
"model_path": model_base + "drivable_python2.pth"}
def path_docker_newseg(self):
self.path_docker()
codebase = "/root/aws/"
self.paths["seg"] = {"model_path": "/root/models/seg_v2.net",
"mean_path": "/root/models/seg_stat_v2.t7"}
def merge_images(self, viz_dict, new_size):
nimage = len(viz_dict)
sqrt_n = math.ceil(math.sqrt(nimage))
sqrt_n = int(sqrt_n)
# compute how many rows
nrow = int(math.ceil(nimage * 1.0 / sqrt_n))
output = np.zeros((new_size[0]*nrow, new_size[1]*sqrt_n, 3), dtype=np.uint8)
self.viz_nrow = nrow
self.viz_ncol = sqrt_n
for i, key in enumerate(sorted(viz_dict.keys())):
image = viz_dict[key]
image = cv2.resize(image,
dsize=(new_size[1], new_size[0]),
interpolation=cv2.INTER_LINEAR)
irow = i // sqrt_n
icol = i % sqrt_n
output[irow*new_size[0]:(irow+1)*new_size[0],
icol*new_size[1]:(icol+1)*new_size[1], :] = image
return output
def get_viz_nrow_ncol(self):
return self.viz_nrow, self.viz_ncol
def compute(self, images, intermediate_size=(576, 768)):
# depth 256*512, seg: 576*768, yolo 312*416
if intermediate_size is not None:
if intermediate_size[0] * images.shape[2] != images.shape[1] * intermediate_size[1]:
print("warning: the images aspect ratio is changed in all_perceptions")
images = resize_images(images, intermediate_size)
self.images = images
for mode in self.instances.keys():
assert(self.num_replicates[mode] == 1)
conn = self.instances[mode]
conn.send(("compute", images))
out_logits = {}
for mode in self.instances.keys():
conn = self.instances[mode]
out_logits[mode] = conn.recv()
return out_logits
def compute_async_process(self, input_queue):
raise DeprecationWarning()
assert(isinstance(input_queue, type(mQueue())))
output_queue = mQueue(5)
p=Process(target=self.compute_async_impl, args=(input_queue, output_queue))
p.start()
return output_queue
def compute_async_thread(self, input_queue):
raise
if not isinstance(input_queue, Queue.Queue):
print("warning, not using Queue.Queue for the thread interface")
output_queue = Queue.Queue(5)
return self.compute_async_impl(input_queue, output_queue, block=False)
def compute_async_thread_channel(self, input_queue):
this_channel_id = self.channel_id
self.channel_id += 1
print("compute async thread channel ", this_channel_id)
# feed this input_queue to the common input queue
if this_channel_id == 0:
# if this is the first call, then setup the main computing pipeline
self.common_input_queue = Queue.Queue(5)
self.common_output_queue = Queue.Queue(5)
self.compute_async_impl(self.common_input_queue, self.common_output_queue, block=False)
self.list_input_queue = []
self.list_output_queue = []
t = threading.Thread(target=self._thread_channel_output, args=(self.common_output_queue, ))
t.start()
self.list_output_queue.append(Queue.Queue(5))
t = threading.Thread(target=self._thread_channel_input, args=(input_queue, self.common_input_queue, this_channel_id,))
t.start()
return self.list_output_queue[-1]
def _thread_channel_input(self, input_queue, common_input, channel_id):
while True:
data = input_queue.get()
common_input.put((channel_id, data))
def _thread_channel_output(self, common_output_queue):
while True:
id, data = common_output_queue.get()
self.list_output_queue[id].put(data)
def compute_async_impl(self, input_queue, output_queue, block=True):
# start multiple threads for each mode
self.batch_id = 0 # the priority number
self.input_queue_replicate = {}
for mode in self.all_modes.keys():
self.input_queue_replicate[mode] = Queue.Queue(5)
t = threading.Thread(target=self._thread_input_replicater, args=(input_queue,))
t.start()
self.output_queue_mode = {}
for mode in self.all_modes.keys():
self.output_queue_mode[mode] = []
for irep in range(self.num_replicates[mode]):
self.output_queue_mode[mode].append(Queue.Queue(3))
t = threading.Thread(target=self._thread_compute, args=(mode, irep,))
t.start()
# merge the replicate output to a queue
self.output_replicate_merged = {}
self.next_ids = {}
for mode in self.all_modes.keys():
t = threading.Thread(target=self._thread_replicate_merger, args=(mode,))
t.start()
t = threading.Thread(target=self._thread_output_merger, args=(output_queue,))
t.start()
if block:
t.join() # this will never returns
return output_queue
def _thread_input_replicater(self, input_queue):
# setup each of the input queues
while True:
data = input_queue.get()
self.images = data[1]
for mode in self.input_queue_replicate.keys():
self.input_queue_replicate[mode].put((self.batch_id, data))
self.batch_id += 1
def _thread_compute(self, mode, irep):
# setup the output queue
output_queue = self.output_queue_mode[mode][irep]
batch_size = self._batch_size[mode]
conn = self.instances[self.rep_name(mode, irep)]
while True:
id, payload = self.input_queue_replicate[mode].get()
ichannel, images = payload
assert(images.shape[0] % batch_size == 0)
res = []
for i in range(images.shape[0] // batch_size):
conn.send(("compute", images[i*batch_size : (i+1)*batch_size]))
res.append(conn.recv())
out = np.concatenate(res, 0)
output_queue.put((id, (ichannel,out)))
def _thread_replicate_merger(self, mode):
num_rep = self.num_replicates[mode]
self.output_replicate_merged[mode] = Queue.Queue(5)
current = [None for _ in range(num_rep)]
self.next_ids[mode] = 0
history = list(range(num_rep))
while True:
search_order = [i for i in range(num_rep) if current[i] is not None]
second_order = []
for i in history:
if current[i] is None and i not in second_order:
second_order.append(i)
third_order = list(set(range(num_rep)) - set(search_order) - set(second_order))
#ntrails = 0
for i in search_order + second_order + third_order:
if current[i] is None:
current[i] = self.output_queue_mode[mode][i].get()
#ntrails += 1
if current[i][0] == self.next_ids[mode]:
self.next_ids[mode] += 1
self.output_replicate_merged[mode].put(current[i])
current[i] = None
history.append(i)
history = history[1:]
#print(mode, "used ", ntrails, " get")
break
def _space2depth(self, input, downscale_factor):
B, H, W, C = input.shape
assert (H % downscale_factor == 0)
assert (W % downscale_factor == 0)
input = np.reshape(input, (B, H//downscale_factor, downscale_factor,
W//downscale_factor, downscale_factor, C))
input = np.transpose(input, (0, 1, 3, 5, 2, 4))
# to shape: B H/Down, W/Down, C, Down_h, Down_w
input = np.reshape(input, (B, H//downscale_factor, W//downscale_factor, -1))
return input
def _merge_logits_all_perception(self, logits_dict):
res = []
det_sz = (39, 52)
#print(sorted(logits_dict.keys()))
for key in sorted(logits_dict.keys()):
if key == "seg":
factor = 3
size = (det_sz[0]*factor, det_sz[1]*factor)
resized = resize_images(logits_dict[key], size, interpolation=cv2.INTER_NEAREST)
resized *= 0.1
resized = self._space2depth(resized, factor)
res.append(resized)
elif key == "depth":
factor = 5
size = (det_sz[0]*factor, det_sz[1]*factor)
resized = resize_images(logits_dict[key], size, interpolation=cv2.INTER_LINEAR)
resized *= 50
resized = self._space2depth(resized, factor)
res.append(resized)
elif "det" in key:
dB, dH, dW, dC = logits_dict[key].shape
# compute the effective height
eH = int(1.0 * det_sz[0] / det_sz[1] * dW)
assert(eH == det_sz[0] and dW == det_sz[1])
# compute the upper margine
H_start = (dH - eH) // 2
# crop the useful part
cropped = logits_dict[key][:, H_start:(H_start + eH), :, :]
# multiply the amplify factor
num_classes = dC // 9 - 5
# we amplify the objectness score by 10
factor = [1.0] * 4 + [10.0] + [1.0] * num_classes
factor = np.array(factor * 9)
factor = np.reshape(factor, newshape=(1, 1, 1, -1))
cropped = cropped * factor
res.append(cropped)
elif key == "seg_abn":
factor = 2
size = (det_sz[0] * factor, det_sz[1] * factor)
resized = resize_images(logits_dict[key], size, interpolation=cv2.INTER_NEAREST)
resized *= 0.1
resized = self._space2depth(resized, factor)
res.append(resized)
elif key == "0intersection":
factor = 1
size = (det_sz[0] * factor, det_sz[1] * factor)
# replicate the image to the size
expanded = np.reshape(logits_dict[key], (-1, 1, 1, 1))
resized = np.tile(expanded, (1, size[0], size[1], 1))
res.append(resized)
elif key == "drivable_area":
factor = 3
size = (det_sz[0] * factor, det_sz[1] * factor)
resized = resize_images(logits_dict[key], size, interpolation=cv2.INTER_NEAREST)
resized *= 0.1
resized = self._space2depth(resized, factor)
res.append(resized)
concat = np.concatenate(res, axis=3)
return concat
def _thread_output_merger(self, output_queue):
while True:
res = {}
ids = []
for mode in self.output_replicate_merged.keys():
if self.output_replicate_merged[mode].empty():
#print("waiting for mode: ", mode)
pass
id, payload = self.output_replicate_merged[mode].get()
ichannel, res[mode] = payload
ids.append(id)
assert(all(np.array(ids)==ids[0]))
# this cost 0.28 seconds, which is 120Hz, will not be the bottleneck, however it will add some delay
res = self._merge_logits_all_perception(res)
output_queue.put((ichannel, res))
def visualize_det_class(self, mode, logits_dict, ibatch, cid):
conn = self.instances[mode]
conn.send(("general", ("visualize_class_heatmap",
{"pred": logits_dict[mode],
"ibatch": ibatch,
"classid": cid})))
return conn.recv()
def visualize_simple(self, logits_dict, ibatch, subplot_size=(312, 416)):
# visualize segmentation with or without traffic light detection module
imsz = lambda image: cv2.resize(image,
dsize=(subplot_size[1], subplot_size[0]),
interpolation=cv2.INTER_LINEAR)
mode = "seg"
assert mode in self.all_modes.keys()
conn = self.instances[mode]
conn.send(("visualize", (logits_dict[mode], ibatch)))
seg_viz = conn.recv()
# convert the segmentation color to a simpler subset
#color = np.array([[0, 0, 142], [128, 64, 128], [244, 35, 232], [70, 70, 70], [70, 130, 180], [230, 150, 140]],
# dtype=np.uint8)
# meaning: car, road, sidewalk, building, sky, rail track
seg_viz[np.logical_and(seg_viz[:, :, 0] == 70, seg_viz[:, :, 1] == 70), :] = np.array([[[244, 35, 232]]]) # building -> sidewalk
#seg_viz[seg_viz[:, :, 0] == 230, :] = np.array([[[244, 35, 232]]]) # rail track -> sidewalk
seg_viz[seg_viz[:, :, 0] == 230, :] = np.array([[[255, 0, 0]]]) # change rail track, or lane marker color
seg_viz[seg_viz[:, :, 0] == 244, :] = np.array([[[0, 255, 0]]]) # change sidewalk color
mode = "det_TL"
if mode in self.all_modes.keys():
conn = self.instances[mode]
conn.send(("visualize", (logits_dict[mode], ibatch)))
det_viz = conn.recv()
# extract the pure red and yellow place
isred = np.logical_and(det_viz[:,:,0]==255, np.logical_and(det_viz[:,:,1]==0, det_viz[:,:,2]==0))
isyel = np.logical_and(det_viz[:, :, 0] == 255,
np.logical_and(det_viz[:, :, 1] == 255, det_viz[:, :, 2] == 0))
to_black = np.logical_or(isred, isyel)
output = 0.4*imsz(det_viz) + 0.6*imsz(seg_viz)
output[to_black, :] = np.array([[[0, 0, 0]]]) # change sidewalk color
output = np.concatenate((imsz(self.images[ibatch]), output), axis=0)
else:
output = 0.4 * imsz(self.images[ibatch]) + 0.6 * imsz(seg_viz)
output = np.concatenate((imsz(self.images[ibatch]), output), axis=0)
self.viz_nrow = 2
self.viz_ncol = 1
return output
def visualize(self, logits_dict, ibatch, subplot_size=(312, 416)):
out_viz = {"0_original": self.images[ibatch]}
for mode in self.all_modes.keys():
if "det" in mode:
# ignores the high threshold detection boxes
continue
conn = self.instances[mode]
conn.send(("visualize", (logits_dict[mode], ibatch)))
for mode in self.all_modes.keys():
if "det" in mode:
continue
conn = self.instances[mode]
out_viz[mode] = conn.recv()
# low threshold detection boxes
for mode in self.all_modes.keys():
conn = self.instances[mode]
if "det" in mode:
#conn.send(("visualize_low_thresh", (logits_dict[mode], ibatch)))
conn.send(("visualize", (logits_dict[mode], ibatch)))
for mode in self.all_modes.keys():
conn = self.instances[mode]
if "det" in mode:
out_viz[mode+"_lowThres"] = conn.recv()
if "det_COCO" in self.instances.keys():
# class 2 is car
out_viz["det_COCO_zcar"] = self.visualize_det_class("det_COCO", logits_dict, ibatch, 2)
if "det_TL" in self.instances.keys():
out_viz["det_TL_zgreen"] = self.visualize_det_class("det_TL", logits_dict, ibatch, 1)
if "det_TS" in self.instances.keys():
out_viz["det_TS_zstop"] = self.visualize_det_class("det_TS", logits_dict, ibatch, 0)
return self.merge_images(out_viz, subplot_size)
def destroy(self):
for key in self.processes:
print("destroying process ", key)
p = self.processes[key]
p.terminate()