This repository has been archived by the owner on Jul 28, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathexport.py
353 lines (287 loc) · 14.4 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# export.py
#
# Export the filters and the results in various formats.
#
# Copyright (c) 2004-2010,2013,2015 Stephane Larouche.
#
# This file is part of OpenFilters.
#
# OpenFilters is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or (at
# your option) any later version.
#
# OpenFilters is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
# USA
from definitions import *
from data_holder import REFLECTION,\
TRANSMISSION,\
ABSORPTION,\
REFLECTION_PHASE,\
TRANSMISSION_PHASE,\
REFLECTION_GD,\
TRANSMISSION_GD,\
REFLECTION_GDD,\
TRANSMISSION_GDD,\
ELLIPSOMETRY,\
COLOR,\
COLOR_TRAJECTORY,\
ADMITTANCE,\
CIRCLE,\
ELECTRIC_FIELD,\
REFLECTION_MONITORING,\
TRANSMISSION_MONITORING,\
ELLIPSOMETRY_MONITORING,\
DATA_TYPE_NAMES
SPECTROPHOTOMETRIC_DATA_TYPES = [REFLECTION,\
TRANSMISSION,\
ABSORPTION,\
REFLECTION_PHASE,\
TRANSMISSION_PHASE,\
REFLECTION_GD,\
TRANSMISSION_GD,\
REFLECTION_GDD,\
TRANSMISSION_GDD]
DIAGRAM_DATA_TYPES = [ADMITTANCE, CIRCLE]
SPECTROPHOTOMETRIC_MONITORING_TYPES = [REFLECTION_MONITORING, TRANSMISSION_MONITORING]
COLUMN_TITLES = {REFLECTION: "R",
TRANSMISSION: "T",
ABSORPTION: "A",
REFLECTION_PHASE: "phase (deg.)",
TRANSMISSION_PHASE: "phase (deg.)",
REFLECTION_GD: "GD (s)",
TRANSMISSION_GD: "GD (s)",
REFLECTION_GDD: "GDD (s^2)",
TRANSMISSION_GDD: "GDD (s^2)",
REFLECTION_MONITORING: "R",
TRANSMISSION_MONITORING: "T"}
########################################################################
# #
# export_index_profile #
# #
########################################################################
def export_index_profile(filename, filter, side = FRONT):
"""Export the index profile of a filter to a file
This function takes 3 arguments:
filename the name of the file in which to write;
filter the filter;
side the side."""
outfile = open(filename, "w")
thickness, n = filter.get_index_profile(side)
outfile.write(" Depth (nm) n at %7.2f nm\n" % filter.get_center_wavelength())
for i in range(len(thickness)):
outfile.write("%10.3f %17.6f\n" % (thickness[i], n[i]))
outfile.close()
########################################################################
# #
# export_results_to_text #
# #
########################################################################
def export_results_to_text(filename, results):
"""Export results to a file
This function takes 3 arguments:
filename the name of the file in which to write;
results a list of results to export.
The results must be data_handler instances. All results are exported
in a single file."""
outfile = open(filename, "w")
for result in results:
data_type = result.get_data_type()
if data_type in SPECTROPHOTOMETRIC_DATA_TYPES:
# Get the data and the properties.
angle = result.get_angle()
polarization = result.get_polarization()
wavelengths = result.get_wavelengths()
spectrum = result.get_data()
# Write the header
outfile.write("%s at %.2f degrees for %s\n" % (DATA_TYPE_NAMES[data_type], angle, polarization_text(polarization)))
outfile.write("%15s %15s\n" % ("wavelength (nm)", COLUMN_TITLES[data_type]))
# Write the data
for i_wvl in range(len(wavelengths)):
if spectrum[i_wvl] < 1.0e-2:
outfile.write("%15.6f %15.6e\n" % (wavelengths[i_wvl], spectrum[i_wvl]))
else:
outfile.write("%15.6f %15.6f\n" % (wavelengths[i_wvl], spectrum[i_wvl]))
elif data_type == ELLIPSOMETRY:
# Get the data and the properties.
angle = result.get_angle()
wavelengths = result.get_wavelengths()
Psi, Delta = result.get_data()
# Write the header
outfile.write("%s at %.2f degrees\n" % (DATA_TYPE_NAMES[data_type], angle))
outfile.write("%15s %15s %15s\n" % ("wavelength (nm)", "Psi (deg.)", "Delta (deg.)"))
# Write the data
for i in range(len(wavelengths)):
outfile.write("%15.6f %15.6f %15.6f\n" % (wavelengths[i], Psi[i], Delta[i]))
elif data_type == COLOR:
# Get the data and the properties.
angle = result.get_angle()
illuminant = result.get_illuminant()
observer = result.get_observer()
R_color, T_color = result.get_data()
# Write the header
outfile.write("%s at %.2f degrees (%s, %s)\n" % (DATA_TYPE_NAMES[data_type], angle, illuminant, observer))
outfile.write("%10s %15s %15s\n" % ("", "R", "T"))
XYZ_R = R_color.XYZ()
xyY_R = R_color.xyY()
Luv_R = R_color.Luv()
Lab_R = R_color.Lab()
LChuv_R = R_color.LChuv()
LChab_R = R_color.LChab()
XYZ_T = T_color.XYZ()
xyY_T = T_color.xyY()
Luv_T = T_color.Luv()
Lab_T = T_color.Lab()
LChuv_T = T_color.LChuv()
LChab_T = T_color.LChab()
outfile.write("%10s %15.6f %15.6f\n" % ("X", XYZ_R[0], XYZ_T[0]))
outfile.write("%10s %15.6f %15.6f\n" % ("Y", XYZ_R[1], XYZ_T[1]))
outfile.write("%10s %15.6f %15.6f\n" % ("Z", XYZ_R[2], XYZ_T[2]))
outfile.write("%10s %15.6f %15.6f\n" % ("x", xyY_R[0], xyY_T[0]))
outfile.write("%10s %15.6f %15.6f\n" % ("y", xyY_R[1], xyY_T[1]))
outfile.write("%10s %15.6f %15.6f\n" % ("L", Luv_R[0], Luv_T[0]))
outfile.write("%10s %15.6f %15.6f\n" % ("u*", Luv_R[1], Luv_T[1]))
outfile.write("%10s %15.6f %15.6f\n" % ("v*", Luv_R[2], Luv_T[2]))
outfile.write("%10s %15.6f %15.6f\n" % ("a*", Lab_R[1], Lab_T[1]))
outfile.write("%10s %15.6f %15.6f\n" % ("b*", Lab_R[2], Lab_T[2]))
outfile.write("%10s %15.6f %15.6f\n" % ("C*(u*v*)", LChuv_R[1], LChuv_T[1]))
outfile.write("%10s %15.6f %15.6f\n" % ("h(u*v*)", LChuv_R[2], LChuv_T[2]))
outfile.write("%10s %15.6f %15.6f\n" % ("C*(a*b*)", LChab_R[1], LChab_T[1]))
outfile.write("%10s %15.6f %15.6f\n" % ("h(a*b*)", LChab_R[2], LChab_T[2]))
elif data_type == COLOR_TRAJECTORY:
# Get the data and the properties.
angles = result.get_angles()
illuminant = result.get_illuminant()
observer = result.get_observer()
R_colors, T_colors = result.get_data()
# Write the header
outfile.write("%s (%s, %s)\n" % (DATA_TYPE_NAMES[data_type], illuminant, observer))
# Write the header
outfile.write("%15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s %15s\n" % ("angle (deg)", "R X", "R Y", "R Z", "R x", "R y", "R L", "R u*", "R v*", "R a*", "R b*", "R C*(u*v*)", "R h(u*v*)", "R C*(a*b*)", "R h(a*b*)", "T X", "T Y", "T Z", "T x", "T y", "T L", "T u*", "T v*", "T a*", "T b*", "T C*(u*v*)", "T h(u*v*)", "T C*(a*b*)", "T h(a*b*)"))
# Write the data
for i_angle in range(len(angles)):
XYZ_R = R_colors[i_angle].XYZ()
xyY_R = R_colors[i_angle].xyY()
Luv_R = R_colors[i_angle].Luv()
Lab_R = R_colors[i_angle].Lab()
LChuv_R = R_colors[i_angle].LChuv()
LChab_R = R_colors[i_angle].LChab()
XYZ_T = T_colors[i_angle].XYZ()
xyY_T = T_colors[i_angle].xyY()
Luv_T = T_colors[i_angle].Luv()
Lab_T = T_colors[i_angle].Lab()
LChuv_T = T_colors[i_angle].LChuv()
LChab_T = T_colors[i_angle].LChab()
outfile.write("%15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f %15.6f\n" % (angles[i_angle], XYZ_R[0], XYZ_R[1], XYZ_R[2], xyY_R[0], xyY_R[1], Luv_R[0], Luv_R[1], Luv_R[2], Lab_R[1], Lab_R[2], LChuv_R[1], LChuv_R[2], LChab_R[1], LChab_R[2], XYZ_T[0], XYZ_T[1], XYZ_T[2], xyY_T[0], xyY_T[1], Luv_T[0], Luv_T[1], Luv_T[2], Lab_T[1], Lab_T[2], LChuv_T[1], LChuv_T[2], LChab_T[1], LChab_T[2]))
elif data_type in DIAGRAM_DATA_TYPES:
# Get the data and the properties.
angle = result.get_angle()
polarization = result.get_polarization()
thickness, real_part, imag_part = result.get_data()
# Write the header
outfile.write("%s at %.2f degrees for %s\n" % (DATA_TYPE_NAMES[data_type], angle, polarization_text(polarization)))
outfile.write("%5s %15s %15s %15s\n" % ("layer", "thickness (nm)", "real part", "imag. part"))
# Write the data
for i_layer in range(len(thickness)):
for i_sublayer in range(len(thickness[i_layer])):
outfile.write("%5i %15.6f %15.6f %15.6f\n" % (i_layer, thickness[i_layer][i_sublayer], real_part[i_layer][i_sublayer], imag_part[i_layer][i_sublayer]))
elif data_type == ELECTRIC_FIELD:
# Get the data and the properties.
angle = result.get_angle()
polarization = result.get_polarization()
thickness, field = result.get_data()
# Write the header
outfile.write("%s at %.2f degrees for %s\n" % (DATA_TYPE_NAMES[data_type], angle, polarization_text(polarization)))
outfile.write("%5s %15s %15s\n" % ("layer", "thickness", "field"))
# Write the data
for i_layer in range(len(thickness)):
for i_sublayer in range(len(thickness[i_layer])):
outfile.write("%5i %15.6f %15.6f\n" % (i_layer, thickness[i_layer][i_sublayer], field[i_layer][i_sublayer]))
elif data_type in SPECTROPHOTOMETRIC_MONITORING_TYPES:
# Get the data and the properties.
wavelengths = result.get_wavelengths()
angle = result.get_angle()
polarization = result.get_polarization()
thickness, spectrum = result.get_data()
if len(wavelengths) == 1:
# Write the header
outfile.write("%s at %.4f nm and %.2f degrees for %s\n" % (DATA_TYPE_NAMES[data_type], wavelengths[0], angle, polarization_text(polarization)))
outfile.write("%5s %15s %15s\n" % ("layer", "thickness (nm)", COLUMN_TITLES[data_type]))
# Write the data
for i_layer in range(len(thickness)):
for i_sublayer in range(len(thickness[i_layer])):
outfile.write("%5i %15.6f %15.6f\n" % (i_layer, thickness[i_layer][i_sublayer], spectrum[0][i_layer][i_sublayer]))
else:
# Write the header
outfile.write("%s at %.2f degrees for %s\n" % (DATA_TYPE_NAMES[data_type], angle, polarization_text(polarization)))
outfile.write("%21s" % "Wavelength (nm)")
for i_wvl in range(len(wavelengths)):
outfile.write(" %15.6f" % wavelengths[i_wvl])
outfile.write("\n")
outfile.write("%5s %15s\n" % ("layer", "thickness (nm)"))
# Write the data
for i_layer in range(len(thickness)):
for i_sublayer in range(len(thickness[i_layer])):
outfile.write("%5s %15.6f" % (i_layer, thickness[i_layer][i_sublayer]))
for i_wvl in range(len(wavelengths)):
outfile.write(" %15.6f" % spectrum[i_wvl][i_layer][i_sublayer])
outfile.write("\n")
elif data_type == ELLIPSOMETRY_MONITORING:
# Get the data and the properties.
wavelengths = result.get_wavelengths()
angle = result.get_angle()
thickness, Psi, Delta = result.get_data()
if len(wavelengths) == 1:
# Write the header
outfile.write("%s at %.4f nm and %.2f degrees\n" % (DATA_TYPE_NAMES[data_type], wavelengths[0], angle))
outfile.write("%5s %15s %15s %15s\n" % ("layer", "thickness (nm)", "Psi (deg.)", "Delta (deg.)"))
# Write the data
for i_layer in range(len(thickness)):
for i_sublayer in range(len(thickness[i_layer])):
outfile.write("%5i %15.6f %15.6f %15.6f\n" % (i_layer, thickness[i_layer][i_sublayer], Psi[0][i_layer][i_sublayer], Delta[0][i_layer][i_sublayer]))
else:
# Write the header
outfile.write("%s at %.2f degrees\n" % (DATA_TYPE_NAMES[data_type], angle))
outfile.write("%21s" % "")
for i_wvl in range(len(wavelengths)):
outfile.write(" %15s %15s" % ("Psi (deg.)", "Delta (deg.)"))
outfile.write("\n")
outfile.write("%21s" % ("Wavelength (nm)"))
for i_wvl in range(len(wavelengths)):
outfile.write(" %15.6f %15.6f" % (wavelengths[i_wvl], wavelengths[i_wvl]))
outfile.write("\n")
outfile.write("%5s %15s\n" % ("layer", "thickness (nm)"))
# Write the data
for i_layer in range(len(thickness)):
for i_sublayer in range(len(thickness[i_layer])):
outfile.write("%5s %15.6f" % (i_layer, thickness[i_layer][i_sublayer]))
for i_wvl in range(len(wavelengths)):
outfile.write(" %15.6f %15.6f" % (Psi[i_wvl][i_layer][i_sublayer], Delta[i_wvl][i_layer][i_sublayer]))
outfile.write("\n")
outfile.close()
########################################################################
# #
# polarization_text #
# #
########################################################################
def polarization_text(polarization):
"""Get a textual representation of the polarization
This function takes a single argument:
polarization the polarization;
and returns a text to describe it.
A special text is returned for s, p or unpolarized light."""
if polarization == S:
return "s-polarized light"
elif polarization == P:
return "p-polarized light"
elif polarization == UNPOLARIZED:
return "unpolarized light"
else:
return "a polarization of %.2f degrees" % polarization