최신 MLLM 관련 스터디. 기본 오후에 진행. 논문, 강의, 코드, 뉴스, 블로그 등 다양한 자료로 학습.
MLLM, LLM, NLG, Dialogue, Reinforcement learning, Distillation, Efficient, Sentence similarity, multiple tasks, multimodal, Stable diffusion, TTS, Text-To-Video, All-To-All, 우주, 생명, 지능, 윤리, 규제, 법, 노화, 의학, 투자, 개발, 인프라, 디자인, 경영, ETC...
유망 스타트업 C레벨, 국내외 탑티어 연구자, 국내외 탑티어 대학, 대학원 재학생과 졸업생, 석학, 교수 등 A급 인재들이 최신 논문, 강의 등 스터디 및 프로젝트 진행.
기본 매주 수요일 오후 7시반. 사전 학습 없이 논문 읽기 최대 20분, 토론 최대 40분. 한 번에 1 ~ 10개 논문, 강의 등 진행. 지금까지는 항상 3개. 주제 논문 선정은 자유. 탑티어 학회 논문 및 프로젝트 제작 예정.
주말을 포함하여, 거의 매일 추가 스터디 존재. 흥미로운 주제거나 참여 되는 날만 중간에 들어와서 중간에 나가도 무관. 모든 규칙은 협의 가능. 오프라인 모임도 예정. 자율 참여.
2023-02-16 23:30 ~ 24:45 염기웅, 강수진, 고현웅
- GPT Understands, Too
- P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
- Do Prompt-Based Models Really Understand the Meaning of their Prompts?
2023-02-19 23:30 ~ 24:30 염기웅, 박상준, 강수진
- ∞-former: Infinite Memory Transformer
- Improving language models by retrieving from trillions of tokens
- Augmented Language Models: a Survey
2023-02-22 19:30 ~ 21:00 염기웅, 박상준, 이웅기, 이현제
- BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
- Structure and Content-Guided Video Synthesis with Diffusion Models
- MusicLM: Generating Music From Text
2023-02-23 23:00 ~ 24:00 염기웅, 박상준, 황명하
- InstructGPT : Training language models to follow instructions with human feedback
- BioGPT: Generative Pre-trained Transformer for Biomedical Text Generation and Mining
2023-02-24 17:00 ~ 19:00 염기웅
- Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback
- Constitutional AI: Harmlessness from AI Feedback
- Provable Copyright Protection for Generative Models
- What learning algorithm is in-context learning? Investigations with linear models
- A Path Towards Autonomous Machine Intelligence
- PAL: Program-aided Language Models
- Toolformer: Language Models Can Teach Themselves to Use Tools
2023-03-01 20:30 ~ 21:40 염기웅, 이대환
- LLaMA: Open and Efficient Foundation Language Models
- Improving alignment of dialogue agents via targeted human judgements
- Training Compute-Optimal Large Language Models
2023-03-04 22:00 ~ 23:30 염기웅, 황명하
- LLaMA-based ChatGPT training, ChatLLaMA
- RLHF: Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback
- BaGuaLu: Targeting Brain Scale Pretrained Models with over 37 Million Cores
2023-03-05 21:00 ~ 21:30 염기웅,
2023-03-08 00:00 ~ 01:00 염기웅, 김미담
- Language Is Not All You Need: Aligning Perception with Language Models
- Flamingo: a Visual Language Model for Few-Shot Learning, Blog
- Multimodal Chain-of-Thought Reasoning in Language Models
2023-03-08 19:30 ~ 20:30 염기웅, 최재훈, 황지현, 김혜인
2023-03-09 20:00 ~ 22:00 염기웅, 윤상현, 신승욱
- Competition-Level Code Generation with AlphaCode
- Scaling Language Models: Methods, Analysis & Insights from Training Gopher
- GPU and learning method required for KoChatLlaMA fine-tuning
- Advantages and Problems of UForm
2023-03-10 21:00 ~ 22:20 염기웅, 나요한, 최재훈, 외 청강 5인
- GPT-4 is coming next week – and it will be multimodal, says Microsoft Germany
- MuAViC: A Multilingual Audio-Visual Corpus for Robust Speech Recognition and Robust Speech-to-Text Translation
- Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages
- PaLM-E: An Embodied Multimodal Language Model
2023-03-10 20:00 ~ 21:00 염기웅, 황지현, 이대환, 나요한
- Language Is Not All You Need: Aligning Perception with Language Models
- Multimodal Chain-of-Thought Reasoning in Language Models
NEXT
- Tightly-Integrated Generative Encoder-Decoder Representation
- Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models
- PaLM: Scaling Language Modeling with Pathways
- SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks
- LoRA: Low-Rank Adaptation of Large Language Models
- Language Models are Few-Shot Learners
- Low-rank Adaptation for Fast Text-to-Image Diffusion Fine-tuning
- huggingface-projects/diffusers-gallery
- huggingface-projects/diffusers-gallery-bot
- 영어만 사용은 금지. 한국어 중심 사용. 특수 용어는 영어 사용.
- 1주일에 논문 2개 이상 스터디. 되는 사람은 10개 이상.
- 3분에서 20분 현장에서 논문 읽기. 5분에서 30분 토론.
- 1시간 스터디 시, 바로 나가도 됨. 원할 때 10분 이하 참여도 무관. 자유롭게 진행. 2시간 매일도 가능.
- 각자 더 뛰어난 게 있다는 것을 인지. 다들 대단한 분들이니 질문 많이 하고, 정보 공유 자주.
- 본인이 하기로 한 일만은 수행. 한다고 말하고, 안 하는 것은 민폐다.
- 기본적으로 녹화 후 내부 공유.
- 정보를 혼자 알게 쓰지 말고, 다 같이 알게 말하기.
- 개인 사정으로 스터디 탈퇴 시, 자기소개에 인사 작성.
- 여러 기관 좋은 규칙 붙여넣기.
- 팀에 도움이 된다고 판단하면, 위 규칙을 모두 무시하고 행동.
- 추가.
앞으로 할만한 논문, 코드, 강의 등.
-
Improving language models by retrieving from trillions of tokens
-
T0: Multitask Prompted Training Enables Zero-Shot Task Generalization
-
The Flan Collection: Designing Data and Methods for Effective Instruction Tuning
-
The Wisdom of Hindsight Makes Language Models Better Instruction Followers
-
Exploring the Benefits of Training Expert Language Models over Instruction Tuning
-
Unsupervised Imputation of Non-ignorably Missing Data Using Importance-Weighted Autoencoders
-
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
-
Do Prompt-Based Models Really Understand the Meaning of their Prompts?
-
Muse: Text-To-Image Generation via Masked Generative Transformers
-
Structure and Content-Guided Video Synthesis with Diffusion Models
-
Accurate global machine learning force fields for molecules with hundreds of atoms
-
Algorithms with More Granular Differential Privacy Guarantees
-
Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly Types
-
Are we cobblers without shoes? Making Computer Science data FAIR
-
Creating, Calibrating, and Validating Large-Scale Microscopic Traffic Simulation
-
Increasing Impact of Mobile Health Programs: SAHELI for Maternal and Child Care
-
Designing Responsible AI: Adaptations of UX Practice to Meet Responsible AI Challenges
-
Developer Productivity for Humans: A Human-Centered Approach to Developer Productivity
-
Development of a Machine Learning Model for Sonographic Assessment of Gestational Age
-
Estimates of broadband upwelling irradiance from GOES-16 ABI
-
Flexible Budgets in Restless Bandits: A Primal-Dual Algorithm for Efficient Budget Allocation
-
Helpful Neighbors: Leveraging Neighbors in Geographic Feature Pronunciation
-
High-Performance GPU-to-CPU Transpilation and Optimization via High-Level Parallel Constructs
-
Helpful Neighbors: Leveraging Neighbors in Geographic Feature Pronunciation
-
KwikBucks: Correlation Clustering with Cheap-Weak and Expensive-Strong Signals
-
Machine Learning for Healthcare: A Bibliometric Study of Contributions from Africa
-
Propeller: A Profile Guided, Relinking Optimizer for Warehouse-Scale Applications
-
Deepmind: Improving language models by retrieving from trillions of tokens
-
Deepmind: Mastering Stratego, the classic game of imperfect information
-
Deepmind: AlphaFold reveals the structure of the protein universe
-
Deepmind: Tackling multiple tasks with a single visual language model
-
Deepmind: Exploring the beauty of pure mathematics in novel ways
-
Deepmind: Putting the power of AlphaFold into the world’s hands
-
Google Research: Deciphering clinical abbreviations with privacy protecting ML
-
Google Research: Google Research, 2022 & beyond: Language, vision and generative models
-
Google Research: Google Research, 2022 & beyond: Responsible AI
-
Google Research: Google Research, 2022 & beyond: ML & computer systems
-
Google Research: Real-time tracking of wildfire boundaries using satellite imagery
-
Google Research: DiffQG: Generating Questions on Paired Sentences
-
Google Research: Assessment of Security Defense of Native Programs Against Software Faults
-
Google Research: Adaptive mixing of auxiliary losses in supervised learning
- Study Playlist
- Improving Language Models by Retrieving from Trillions of Tokens | NLP Journal Club
- ECMLPKDD2021: WuDao: Pretrain the World, Keynote speaker talk by Jie Tang
- StrictlyVC in conversation with Sam Altman, part two (OpenAI)
- Are Bigger Language Models Better? | DeepMind Gopher and RETRO
- The Illustrated Retrieval Transformer