-
Notifications
You must be signed in to change notification settings - Fork 53
/
tools.py
executable file
·222 lines (175 loc) · 5.93 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
"""Utility functions."""
import os
import errno
import six
import json
import pickle
import numpy as np
def gen_feed_dict(model, trial, hp):
"""Generate feed_dict for session run."""
if hp['in_type'] == 'normal':
feed_dict = {model.x: trial.x,
model.y: trial.y,
model.c_mask: trial.c_mask}
elif hp['in_type'] == 'multi':
n_time, batch_size = trial.x.shape[:2]
new_shape = [n_time,
batch_size,
hp['rule_start']*hp['n_rule']]
x = np.zeros(new_shape, dtype=np.float32)
for i in range(batch_size):
ind_rule = np.argmax(trial.x[0, i, hp['rule_start']:])
i_start = ind_rule*hp['rule_start']
x[:, i, i_start:i_start+hp['rule_start']] = \
trial.x[:, i, :hp['rule_start']]
feed_dict = {model.x: x,
model.y: trial.y,
model.c_mask: trial.c_mask}
else:
raise ValueError()
return feed_dict
def _contain_model_file(model_dir):
"""Check if the directory contains model files."""
for f in os.listdir(model_dir):
if 'model.ckpt' in f:
return True
return False
def _valid_model_dirs(root_dir):
"""Get valid model directories given a root directory."""
return [x[0] for x in os.walk(root_dir) if _contain_model_file(x[0])]
def valid_model_dirs(root_dir):
"""Get valid model directories given a root directory(s).
Args:
root_dir: str or list of strings
"""
if isinstance(root_dir, six.string_types):
return _valid_model_dirs(root_dir)
else:
model_dirs = list()
for d in root_dir:
model_dirs.extend(_valid_model_dirs(d))
return model_dirs
def load_log(model_dir):
"""Load the log file of model save_name"""
fname = os.path.join(model_dir, 'log.json')
if not os.path.isfile(fname):
return None
with open(fname, 'r') as f:
log = json.load(f)
return log
def save_log(log):
"""Save the log file of model."""
model_dir = log['model_dir']
fname = os.path.join(model_dir, 'log.json')
with open(fname, 'w') as f:
json.dump(log, f)
def load_hp(model_dir):
"""Load the hyper-parameter file of model save_name"""
fname = os.path.join(model_dir, 'hp.json')
if not os.path.isfile(fname):
fname = os.path.join(model_dir, 'hparams.json') # backward compat
if not os.path.isfile(fname):
return None
with open(fname, 'r') as f:
hp = json.load(f)
# Use a different seed aftering loading,
# since loading is typically for analysis
hp['rng'] = np.random.RandomState(hp['seed']+1000)
return hp
def save_hp(hp, model_dir):
"""Save the hyper-parameter file of model save_name"""
hp_copy = hp.copy()
hp_copy.pop('rng') # rng can not be serialized
with open(os.path.join(model_dir, 'hp.json'), 'w') as f:
json.dump(hp_copy, f)
def load_pickle(file):
try:
with open(file, 'rb') as f:
data = pickle.load(f)
except UnicodeDecodeError as e:
with open(file, 'rb') as f:
data = pickle.load(f, encoding='latin1')
except Exception as e:
print('Unable to load data ', file, ':', e)
raise
return data
def find_all_models(root_dir, hp_target):
"""Find all models that satisfy hyperparameters.
Args:
root_dir: root directory
hp_target: dictionary of hyperparameters
Returns:
model_dirs: list of model directories
"""
dirs = valid_model_dirs(root_dir)
model_dirs = list()
for d in dirs:
hp = load_hp(d)
if all(hp[key] == val for key, val in hp_target.items()):
model_dirs.append(d)
return model_dirs
def find_model(root_dir, hp_target, perf_min=None):
"""Find one model that satisfies hyperparameters.
Args:
root_dir: root directory
hp_target: dictionary of hyperparameters
perf_min: float or None. If not None, minimum performance to be chosen
Returns:
d: model directory
"""
model_dirs = find_all_models(root_dir, hp_target)
if perf_min is not None:
model_dirs = select_by_perf(model_dirs, perf_min)
if not model_dirs:
# If list empty
print('Model not found')
return None, None
d = model_dirs[0]
hp = load_hp(d)
log = load_log(d)
# check if performance exceeds target
if log['perf_min'][-1] < hp['target_perf']:
print("""Warning: this network perform {:0.2f}, not reaching target
performance {:0.2f}.""".format(
log['perf_min'][-1], hp['target_perf']))
return d
def select_by_perf(model_dirs, perf_min):
"""Select a list of models by a performance threshold."""
new_model_dirs = list()
for model_dir in model_dirs:
log = load_log(model_dir)
# check if performance exceeds target
if log['perf_min'][-1] > perf_min:
new_model_dirs.append(model_dir)
return new_model_dirs
def mkdir_p(path):
"""
Portable mkdir -p
"""
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise
def gen_ortho_matrix(dim, rng=None):
"""Generate random orthogonal matrix
Taken from scipy.stats.ortho_group
Copied here from compatibilty with older versions of scipy
"""
H = np.eye(dim)
for n in range(1, dim):
if rng is None:
x = np.random.normal(size=(dim-n+1,))
else:
x = rng.normal(size=(dim-n+1,))
# random sign, 50/50, but chosen carefully to avoid roundoff error
D = np.sign(x[0])
x[0] += D*np.sqrt((x*x).sum())
# Householder transformation
Hx = -D*(np.eye(dim-n+1) - 2.*np.outer(x, x)/(x*x).sum())
mat = np.eye(dim)
mat[n-1:, n-1:] = Hx
H = np.dot(H, mat)
return H