-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathSolution.java
66 lines (56 loc) · 1.8 KB
/
Solution.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
package leetcode.algo.dynamic_programming.leet_zh_64;
public class Solution {
/*
* Title: 64. 最小路径和
* Link : https://leetcode-cn.com/problems/minimum-path-sum
* Label: ["数组", "动态规划"]
* Diff : Medium
* Desc :
* 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
* 执行用时 : 3 ms
* 内存消耗 : 42.7 MB
* */
public int minPathSum(int[][] grid) {
if (grid.length == 0 || grid[0].length == 0) {
return 0;
}
int[][] dp = new int[grid.length][grid[0].length];
// init
dp[0][0] = grid[0][0];
for (int i = 1; i < grid.length; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < grid[0].length; i++) {
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
// dp
for (int i = 1; i < grid.length; i++) {
int[] m = grid[0];
for (int j = 1; j < m.length; j++) {
dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[grid.length - 1][grid[0].length - 1];
}
public static void main(String[] args) {
Solution ss = new Solution();
// System.out.println(ss.minPathSum(new int[][]{
// {1, 3, 1},
// {1, 5, 1},
// {4, 2, 1}
// }));
System.out.println(ss.minPathSum(new int[][]{
{}
}));
}
}