forked from rafatieppo/lucylattes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex_capes.py
387 lines (379 loc) · 17.6 KB
/
index_capes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# ------------------------------------------------------------
# packages
# ------------------------------------------------------------
# ------------------------------------------------------------
import numpy as np
import pandas as pd
import os
import glob
import re
from readidlist import readIdList
from extrafuns import *
# ------------------------------------------------------------
# Funcoes
# ------------------------------------------------------------
def capes_indori():
# nome ppg
config_file = open('./config.txt', 'r')
name_ppg = config_file.readlines()[8].split(':')[1]
name_ppg = name_ppg.rstrip('\n')
name_ppg = name_ppg.strip(' ')
name_ppg = fun_uppercase(name_ppg)
config_file.close()
# lendo pesquisadores
df_idlist = readIdList()
num_dp = len(df_idlist)
# lendo orientacoes_all
df = pd.read_csv('./csv_producao/orientacoes_all.csv',
header=0, sep=',')
df = df.query('NATURE == "Dissertação de mestrado" \
or NATURE == "Tese de doutorado"')
df = df.query('TYPE != "CO_ORIENTADOR"').reset_index(drop=True)
df['COURSE'] = df['COURSE'].apply(fun_uppercase)
df = df.query('COURSE == @name_ppg')
# identificando os ppg dos pesquisadores
ls_ppgs = df['COURSE'].unique()
ls_ppgs.sort()
ls_ppgs = ", ".join(ls_ppgs)
# print('------------------------------------------------------------')
# print("PPGs listados nos curriculos dos pesquisadores: ", ls_ppgs)
# print('------------------------------------------------------------')
# print("PPG a ser avaliado: ", name_ppg)
# print('------------------------------------------------------------')
# definindo os quadrienios
year_fquadrien = 2013
ls_quadri = [year_fquadrien]
for i in range(5):
year_fquadrien = year_fquadrien + 4
ls_quadri.append(year_fquadrien)
# print(ls_quadri)
# calculo para cada trienio
ls_yini_quad = []
ls_yfin_quad = []
ls_indori = []
for i in range(len(ls_quadri)):
yini = ls_quadri[i]
yfin = ls_quadri[i] + 3
# print('Quadrienio', yini, ' - ', yfin)
df_qtdby_yradv = df.groupby(['YEAR', 'NATURE'])[
'STUDENT'].count().reset_index()
# print(df_qtdby_yradv)
df_qtdby_yradv.query('YEAR >= @yini and YEAR <= @yfin', inplace=True)
if len(df_qtdby_yradv) < 1:
pass
else:
df_qtdby_yradv['PESO_DEF'] = df_qtdby_yradv['NATURE'].apply(
fun_peso_defesa)
df_qtdby_yradv['PROD_STUPESO'] = (df_qtdby_yradv['STUDENT'] *
df_qtdby_yradv['PESO_DEF'])
df_qtdby_yradv = df_qtdby_yradv.groupby(
['YEAR'])['PROD_STUPESO'].sum() / num_dp
df_qtdby_yradv = df_qtdby_yradv.reset_index()
df_qtdby_yradv.columns = ['YEAR', 'INDORI']
indori_quad = df_qtdby_yradv['INDORI'].mean()
ls_yini_quad.append(yini)
ls_yfin_quad.append(yfin)
ls_indori.append(round(indori_quad, 3))
# print(df_qtdby_yradv)
# print(indori_quad)
df_indori = pd.DataFrame({'QUADRIENIO_INI': ls_yini_quad,
'QUADRIENIO_FIM': ls_yfin_quad,
'INDORI': ls_indori})
df_indori['INDORI_CLASSIFICACAO'] = df_indori['INDORI'].apply(
fun_indori_classif)
pathfilename = str('./csv_producao/' + 'capesindex_indori' '.csv')
df_indori.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com', len(df_indori), ' quadrienios')
# print(df_indori)
def capes_indprodart():
# lendo pesquisadores
df_idlist = readIdList()
num_dp = len(df_idlist)
# lendo periodicos_uniq
df = pd.read_csv('./csv_producao/periodicos_uniq.csv',
header=0, sep=',')
num_period_tot = len(df['QUALIS'])
df.query('QUALIS != "XX"', inplace=True)
df.query('QUALIS != "C "', inplace=True)
df['YEAR'] = df['YEAR'].apply(iint)
num_period_semqualis = num_period_tot - len(df['QUALIS'])
print('Numero de periodicos sem QUALIS = ', num_period_semqualis)
# definindo os quadrienios
year_fquadrien = 2013
ls_quadri = [year_fquadrien]
for i in range(5):
year_fquadrien = year_fquadrien + 4
ls_quadri.append(year_fquadrien)
# print(ls_quadri)
# calculo para cada trienio
ls_yini_quad = []
ls_yfin_quad = []
ls_indprodart = []
for i in range(len(ls_quadri)):
yini = ls_quadri[i]
yfin = ls_quadri[i] + 3
df_qtdby_qualis = df.groupby(['YEAR', 'QUALIS'])[
'TITLE'].count().reset_index()
df_qtdby_qualis.columns = ['YEAR', 'QUALIS', 'AMOUNT']
# print(df_qtdby_qualis)
df_qtdby_qualis.query('YEAR >= @yini and YEAR <= @yfin', inplace=True)
if len(df_qtdby_qualis) < 1:
pass
else:
# print('Quadrienio', yini, ' - ', yfin)
df_qtdby_qualis['PESO'] = df_qtdby_qualis['QUALIS'].apply(
fun_indprodart_classif)
df_qtdby_qualis['PROD_AMOUPESO'] = df_qtdby_qualis['AMOUNT'] * \
df_qtdby_qualis['PESO']
# verificando representatividade B4 e B5 deve ser <= 0.2 por ano
# print(df_qtdby_qualis)
df_grade_tot_year = df_qtdby_qualis.groupby(
['YEAR'])['PROD_AMOUPESO'].sum().reset_index()
df_qtdby_qualis_b4b5 = df_qtdby_qualis.query(
'QUALIS == "B4" or QUALIS == "B5"')
# print(df_grade_tot_year)
# print(df_qtdby_qualis_b4b5)
ls_years_b4b5_uniq = df_qtdby_qualis_b4b5['YEAR'].unique()
for ia in range(len(ls_years_b4b5_uniq)):
year_b4b5 = ls_years_b4b5_uniq[ia]
df_yearb4b5 = df_qtdby_qualis_b4b5.query('YEAR == @year_b4b5')
grade_tot_year_b4b5 = df_yearb4b5['PROD_AMOUPESO'].sum()
df_temp = df_grade_tot_year.query('YEAR == @year_b4b5')
grade_tot_year = df_temp['PROD_AMOUPESO'].sum()
# print('Ano ', str(year_b4b5), 'B4 e B5 representam: ',
# str(round(grade_tot_year_b4b5 / grade_tot_year, 2)))
if grade_tot_year_b4b5 / grade_tot_year > 0.2:
print('Para o ano ', str(year_b4b5),
'artigos B4 B5 glosados, maior que 0.2')
df_qtdby_qualis.query(
'YEAR != @year_b4b5 and QUALIS != "B4"', inplace=True)
df_qtdby_qualis.query(
'YEAR != @year_b4b5 and QUALIS != "B5"', inplace=True)
df_qtdby_qualis = df_qtdby_qualis.groupby(
['YEAR'])['PROD_AMOUPESO'].sum() / num_dp
df_qtdby_qualis = df_qtdby_qualis.reset_index()
df_qtdby_qualis.columns = ['YEAR', 'INDPRODART']
indprodart = df_qtdby_qualis['INDPRODART'].mean()
ls_indprodart.append(indprodart)
ls_yini_quad.append(yini)
ls_yfin_quad.append(yfin)
df_indprodart = pd.DataFrame({'QUADRIENIO_INI': ls_yini_quad,
'QUADRIENIO_FIM': ls_yfin_quad,
'INDPRODART': ls_indprodart})
pathfilename = str('./csv_producao/' + 'capesindex_indprodart' '.csv')
df_indprodart.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com', len(df_indprodart), ' quadrienios')
# print(df_qtdby_qualis_b4b5)
# print(df_qtdby_qualis)
# print(df_indprodart)
def capes_indautdis():
# nome ppg
config_file = open('./config.txt', 'r')
name_ppg = config_file.readlines()[8].split(':')[1]
name_ppg = name_ppg.rstrip('\n')
name_ppg = name_ppg.strip(' ')
name_ppg = fun_uppercase(name_ppg)
config_file.close()
# lendo pesquisadores
df_idlist = readIdList()
num_dp = len(df_idlist)
# lendo orientacoes_all
df = pd.read_csv('./csv_producao/orientacoes_all.csv',
header=0, sep=',')
df = df.query('NATURE == "Dissertação de mestrado" \
or NATURE == "Tese de doutorado"')
df = df.query('TYPE != "CO_ORIENTADOR"').reset_index(drop=True)
df['COURSE'] = df['COURSE'].apply(fun_uppercase)
df['STUDENT'] = df['STUDENT'].apply(fun_uppercase)
df['FULL_NAME'] = df['FULL_NAME'].apply(fun_uppercase)
df = df.query('COURSE == @name_ppg')
# identificando os ppg dos pesquisadores
ls_ppgs = df['COURSE'].unique()
ls_ppgs.sort()
ls_ppgs = ", ".join(ls_ppgs)
# print('------------------------------------------------------------')
# print("PPGs listados nos curriculos dos pesquisadores: ", ls_ppgs)
# print('------------------------------------------------------------')
# print("PPG a ser avaliado: ", name_ppg)
# print('------------------------------------------------------------')
# definindo os quadrienios
year_fquadrien = 2013
ls_quadri = [year_fquadrien]
df_indautdisc_all = pd.DataFrame(
columns=['QUADRIENIO', 'STUDENT', 'DOCENTE', 'TYPE', 'AMOUNT'])
for i in range(5):
year_fquadrien = year_fquadrien + 4
ls_quadri.append(year_fquadrien)
# print(ls_quadri)
# calculo para cada trienio
for i in range(len(ls_quadri)):
ls_yini_quad = []
ls_yfin_quad = []
ls_disc = []
ls_doce = []
ls_disc_type_prod = []
ls_disc_amount_prod_period = []
yini = ls_quadri[i] # egressos ate 5 anos
yfin = ls_quadri[i] + 3
# print('Quadrienio', yini, ' - ', yfin)
df_disc_quadri = df.query('YEAR >= @yini+3-4 and YEAR <= @yfin+3')
df_disc_quadri
if len(df_disc_quadri) < 1:
print("sem orientacoes para o periodo")
pass
else:
ls_disc_period = list(df_disc_quadri['STUDENT'])
ls_doce_period = list(df_disc_quadri['FULL_NAME'])
df_period_all = pd.read_csv('./csv_producao/periodicos_all.csv',
header=0, sep=',')
df_period_all['AUTHOR'] = df_period_all['AUTHOR'].apply(
fun_uppercase)
for ia in range(len(ls_disc_period)):
period_count = 0
for ib in range(len(df_period_all)):
# print(ia.upper(), '---', df_period_all.iloc[ib, 7])
zdis = ls_disc_period[ia].split(' ')[-1]
zdoc = ls_doce_period[ia].split(' ')[-1]
zaut = df_period_all['AUTHOR'].iloc[ib]
if zdis in zaut and zdoc in zaut:
period_count += 1
disc_type_prod = 'periodico'
quadr = str(str(yini) + '-' + str(yfin))
ls_disc.append(ls_disc_period[ia])
ls_doce.append(ls_doce_period[ia])
ls_disc_type_prod.append(disc_type_prod)
ls_disc_amount_prod_period.append(period_count)
ls_quad = np.repeat(quadr, len(ls_disc))
df_indautdisc = pd.DataFrame(list(zip(ls_quad,
ls_disc,
ls_doce,
ls_disc_type_prod,
ls_disc_amount_prod_period)),
columns=['QUADRIENIO', 'STUDENT', 'DOCENTE', 'TYPE', 'AMOUNT'])
df_indautdisc_all = pd.concat([df_indautdisc_all,
df_indautdisc])
ls_indautdisc_quad = []
ls_indautdisc = []
ls_indis = []
quad_indautdisc = df_indautdisc_all['QUADRIENIO'].unique()
for i in range(len(quad_indautdisc)):
q = quad_indautdisc[i]
df_d = df_indautdisc_all.query('QUADRIENIO == @q')
disc_zero = len(df_d.query('AMOUNT == 0'))
E = (len(df_d) - disc_zero)
F = len(df_d)
G = df_d['AMOUNT'].sum()
indaut = E / F
indis = G / F
# print(indaut, '--', indis, '--', disc_zero, F)
ls_indautdisc_quad.append(q)
ls_indautdisc.append(indaut)
ls_indis.append(indis)
df_indiscente = pd.DataFrame(list(zip(ls_indautdisc_quad,
ls_indautdisc,
ls_indis)),
columns=['QUADRIENIO', 'INDOUT',
'INDIS'])
pathfilename = str('./csv_producao/' + 'capesindex_indautdis' '.csv')
df_indiscente.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com', len(df_indiscente), ' quadrienios')
def capes_distindproddp():
# lendo pesquisadores
df_idlist = readIdList()
num_dp = len(df_idlist)
# lendo periodicos_uniq
df = pd.read_csv('./csv_producao/periodicos_uniq.csv',
header=0, sep=',')
num_period_tot = len(df['QUALIS'])
df.query('QUALIS != "XX"', inplace=True)
df.query('QUALIS != "C "', inplace=True)
df['YEAR'] = df['YEAR'].apply(iint)
num_period_semqualis = num_period_tot - len(df['QUALIS'])
print('Numero de periodicos sem QUALIS = ', num_period_semqualis)
# definindo os quadrienios
year_fquadrien = 2013
ls_quadri = [year_fquadrien]
for i in range(5):
year_fquadrien = year_fquadrien + 4
ls_quadri.append(year_fquadrien)
# print(ls_quadri)
# calculo para cada trienio
ls_yini_quad = []
ls_yfin_quad = []
df_indprodart_full = pd.DataFrame(columns=['QUADRIENIO',
'FULL_NAME',
'INDPRODART',
'CLASSIF'])
for i in range(len(ls_quadri)):
yini = ls_quadri[i]
yfin = ls_quadri[i] + 3
df_qtdby_qualis = df.groupby(['YEAR', 'FULL_NAME',
'QUALIS'])['TITLE'].count().reset_index()
df_qtdby_qualis.columns = ['YEAR', 'FULL_NAME', 'QUALIS', 'AMOUNT']
# print(df_qtdby_qualis)
df_qtdby_qualis.query('YEAR >= @yini and YEAR <= @yfin', inplace=True)
if len(df_qtdby_qualis) < 1:
pass
else:
# print('Quadrienio', yini, ' - ', yfin)
df_qtdby_qualis['PESO'] = df_qtdby_qualis['QUALIS'].apply(
fun_indprodart_classif)
df_qtdby_qualis['PROD_AMOUPESO'] = df_qtdby_qualis['AMOUNT'] * \
df_qtdby_qualis['PESO']
# verificando representatividade B4 e B5 deve ser <= 0.2 por ano
# print(df_qtdby_qualis)
df_grade_tot_year = df_qtdby_qualis.groupby(
['YEAR'])['PROD_AMOUPESO'].sum().reset_index()
df_qtdby_qualis_b4b5 = df_qtdby_qualis.query(
'QUALIS == "B4" or QUALIS == "B5"')
# print(df_grade_tot_year)
# print(df_qtdby_qualis_b4b5)
ls_years_b4b5_uniq = df_qtdby_qualis_b4b5['YEAR'].unique()
for ia in range(len(ls_years_b4b5_uniq)):
year_b4b5 = ls_years_b4b5_uniq[ia]
df_yearb4b5 = df_qtdby_qualis_b4b5.query('YEAR == @year_b4b5')
grade_tot_year_b4b5 = df_yearb4b5['PROD_AMOUPESO'].sum()
df_temp = df_grade_tot_year.query('YEAR == @year_b4b5')
grade_tot_year = df_temp['PROD_AMOUPESO'].sum()
# print('Ano ', str(year_b4b5), 'B4 e B5 representam: ',
# str(round(grade_tot_year_b4b5 / grade_tot_year, 2)))
if grade_tot_year_b4b5 / grade_tot_year > 0.2:
print('Para o ano ', str(year_b4b5),
'artigos B4 B5 glosados, maior que 0.2')
df_qtdby_qualis.query(
'YEAR != @year_b4b5 and QUALIS != "B4"', inplace=True)
df_qtdby_qualis.query(
'YEAR != @year_b4b5 and QUALIS != "B5"', inplace=True)
df_qtdby_qualis = df_qtdby_qualis.groupby(
['YEAR', 'FULL_NAME'])['PROD_AMOUPESO'].sum() / num_dp
df_qtdby_qualis = df_qtdby_qualis.reset_index()
df_qtdby_qualis.columns = ['YEAR', 'FULL_NAME', 'INDPRODART']
df_qtdby_qualis = df_qtdby_qualis.groupby(
['FULL_NAME'])['INDPRODART'].mean().reset_index()
df_qtdby_qualis['CLASSIF'] = df_qtdby_qualis['INDPRODART'].apply(
fun_indori_classif)
quadr = str(str(yini) + '-' + str(yfin))
df_qtdby_qualis['QUADRIENIO'] = np.repeat(
quadr, len(df_qtdby_qualis))
df_qtdby_qualis = df_qtdby_qualis[[
'QUADRIENIO', 'FULL_NAME', 'INDPRODART', 'CLASSIF']]
df_indprodart_full = pd.concat(
[df_indprodart_full, df_qtdby_qualis], axis=0)
pathfilename = str('./csv_producao/' + 'capesindex_distindproddp_doce.csv')
df_indprodart_full.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com', len(
df_indprodart_full), ' pesquisadores para todos os quadrienios')
# qd = df_indprodart_full['QUADRIENIO'].unique()
df_distindproddp = df_indprodart_full.groupby(['QUADRIENIO', 'CLASSIF'])[
'FULL_NAME'].count().reset_index()
df_distindproddp.columns = ['QUADRIENIO', 'CLASSIF', 'COUNT']
df_distindproddp['DISTINDPRODDP'] = 100 * \
df_distindproddp['COUNT'] / num_dp
df_distindproddp.query('CLASSIF != "FRACO" and CLASSIF != \
"DEFICIENTE"', inplace=True)
df_distindproddp = df_distindproddp.groupby(
['QUADRIENIO'])['DISTINDPRODDP'].sum().reset_index()
pathfilename = str('./csv_producao/' + 'capesindex_distindproddp' '.csv')
df_distindproddp.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com', len(
df_distindproddp), ' quadrienios')