forked from rafatieppo/lucylattes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtidydf.py
361 lines (351 loc) · 16.1 KB
/
tidydf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import platform
import re
import glob
import os
import pandas as pd
import numpy as np
from extrafuns import *
# ------------------------------------------------------------
# packages
# ------------------------------------------------------------
# ------------------------------------------------------------
# ------------------------------------------------------------
# Funcoes
# ------------------------------------------------------------
def gettidydf():
config_file = open('./config.txt', 'r')
yyi = config_file.readlines()[5].split(':')[1]
yyi = yyi.rstrip('\n')
yyi = yyi.strip(' ')
yyi = float(yyi)
config_file.close()
config_file = open('./config.txt', 'r')
yyf = config_file.readlines()[6].split(':')[1]
yyf = yyf.rstrip('\n')
yyf = yyf.strip(' ')
yyf = float(yyf)
config_file.close()
# verificando sistema
plat_sys = platform.system()
# ------------------------------------------------------------
# Projetos de pesquisa e extensão
# ------------------------------------------------------------
# df com todos os projetos pesq e ext
lscsv_ppe = glob.glob('./csv_producao/*_ppe.csv')
dfppe = pd.DataFrame()
lsid = []
for i in range(len(lscsv_ppe)):
a = pd.read_csv(lscsv_ppe[i], header=0)
dfppe = dfppe.append(a, ignore_index=False)
iid = fun_idd_unixwind(plat_sys, lscsv_ppe, i)
#iid = str(lscsv_ppe[i].split('_')[1].split('/')[1])
idrep = np.repeat(iid, len(a['PROJ']))
lsid.append(idrep)
dfppe['ID'] = np.concatenate(lsid)
lscsv_fullname = glob.glob('./csv_producao/*fullname.csv')
len(lscsv_fullname)
# df com nome completo, sobrenome e iid
dffullname = pd.DataFrame()
for i in range(len(lscsv_fullname)):
a = pd.read_csv(lscsv_fullname[i], header=0, dtype='str')
dffullname = dffullname.append(a, ignore_index=False)
# passando ID para string, para poder comparar com dfpaper
# cancelei a ss() pq o read_csv do a esta com dtype='str
dffullname['ID'] = dffullname['ID'].apply(ss)
dfppe = pd.merge(dfppe, dffullname, on='ID')
dffullname = dffullname.reset_index(drop=True)
# processo para excluir PROJETOS repetido busca o sobrenome do autor no
# dffullname por meio do iid lattes. divide a coluna autores do
# paper. verifica a ordem do sobrenome no author_split
lsauthor_order = []
order = -99
for i in range(len(dfppe['ID'])):
lastname = dffullname[dffullname['ID']
== (dfppe.iloc[i, 6])]
lastname = lastname.iloc[0, 2]
author_split = dfppe.iloc[i, 7].split(',')
# print(lastname)
# print(len(author_split))
for aa in range(len(author_split)):
test = lastname in author_split[aa]
if test == True:
order = aa + 1
lsauthor_order.append(order)
dfppe['OR'] = lsauthor_order
# retirando projeto repetido, fica para o author com maior importancia
dfppe_uniq = dfppe.sort_values(['OR'])
dfppe_uniq.drop_duplicates(['PROJ'], inplace=True)
pathfilename = str('./csv_producao/projetos_all.csv')
dfppe.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfppe['PROJ']), ' projetos')
pathfilename = str('./csv_producao/projetos_uniq.csv')
dfppe_uniq.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfppe_uniq['PROJ']), ' projetos')
# ------------------------------------------------------------
# Producao bibliografica
# ------------------------------------------------------------
# df com todos os periodicos
lscsv_paper = glob.glob('./csv_producao/*period.csv')
dfpaper = pd.DataFrame()
lsid = []
for i in range(len(lscsv_paper)):
a = pd.read_csv(lscsv_paper[i], header=0)
dfpaper = dfpaper.append(a, ignore_index=False)
iid = fun_idd_unixwind(plat_sys, lscsv_paper, i)
# iid = str(lscsv_paper[i].split('_')[1].split('/')[1])
idrep = np.repeat(iid, len(a['TITLE']))
lsid.append(idrep)
dfpaper['ID'] = np.concatenate(lsid)
lscsv_fullname = glob.glob('./csv_producao/*fullname.csv')
len(lscsv_fullname)
# df com nome completo, sobrenome e iid
dffullname = pd.DataFrame()
for i in range(len(lscsv_fullname)):
a = pd.read_csv(lscsv_fullname[i], header=0, dtype='str')
dffullname = dffullname.append(a, ignore_index=False)
# passando IID para string, para poder comparar com dfpaper
# cancelei a ss() pq o read_csv do a esta com dtype='str
# dffullname['ID'] = dffullname['ID'].apply(ss)
dfpaper = pd.merge(dfpaper, dffullname, on='ID')
dffullname = dffullname.reset_index(drop=True)
# processo para excluir PAPER repetido busca o sobrenome do autor no
# dffullname por meio do iid lattes. divide a coluna autores do
# paper.
# atual: a ordem já vem no dfpaper
# antiga: verifica a ordem do sobrenome no author_split
#lsauthor_order = []
#order = -99
# for i in range(len(dfpaper['ID'])):
# lastname = dffullname[dffullname['ID']
# == (dfpaper.iloc[i, 9])]
# lastname = lastname.iloc[0, 2]
# author_split = dfpaper.iloc[i, 7].split(',')
# # print(lastname)
# # print(len(author_split))
# for aa in range(len(author_split)):
# test = lastname in author_split[aa]
# if test == True:
# order = aa + 1
# lsauthor_order.append(order)
#dfpaper['OR'] = lsauthor_order
# retirando paper repetido, fica para o author com maior importancia
dfpaper_uniq = dfpaper.sort_values(['ORDER_OK'])
dfpaper_uniq.drop_duplicates(['TITLE'], inplace=True)
pathfilename = str('./csv_producao/periodicos_all.csv')
dfpaper.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfpaper['TITLE']), ' artigos')
pathfilename = str('./csv_producao/periodicos_uniq.csv')
dfpaper_uniq.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfpaper_uniq['TITLE']), ' artigos')
# ------------------------------------------------------------
# Producao bibliografica
# ------------------------------------------------------------
# df com todos os trabalhos em eventos
lscsv_paper = glob.glob('./csv_producao/*trabevent.csv')
dfpaper = pd.DataFrame()
lsid = []
for i in range(len(lscsv_paper)):
a = pd.read_csv(lscsv_paper[i], header=0)
dfpaper = dfpaper.append(a, ignore_index=False)
iid = fun_idd_unixwind(plat_sys, lscsv_paper, i)
# iid = str(lscsv_paper[i].split('_')[1].split('/')[1])
idrep = np.repeat(iid, len(a['TITLE']))
lsid.append(idrep)
dfpaper['ID'] = np.concatenate(lsid)
lscsv_fullname = glob.glob('./csv_producao/*fullname.csv')
len(lscsv_fullname)
# df com nome completo, sobrenome e iid
dffullname = pd.DataFrame()
for i in range(len(lscsv_fullname)):
a = pd.read_csv(lscsv_fullname[i], header=0, dtype='str')
dffullname = dffullname.append(a, ignore_index=False)
# passando IID para string, para poder comparar com dfpaper
# cancelei a ss() pq o read_csv do a esta com dtype='str
# dffullname['ID'] = dffullname['ID'].apply(ss)
dfpaper = pd.merge(dfpaper, dffullname, on='ID')
dffullname = dffullname.reset_index(drop=True)
# processo para excluir PAPER repetido busca o sobrenome do autor no
# dffullname por meio do iid lattes. divide a coluna autores do
# paper.
# atual: a ordem já vem no dfpaper
# antiga: verifica a ordem do sobrenome no author_split
#lsauthor_order = []
#order = -99
# for i in range(len(dfpaper['ID'])):
# lastname = dffullname[dffullname['ID']
# == (dfpaper.iloc[i, 9])]
# lastname = lastname.iloc[0, 2]
# author_split = dfpaper.iloc[i, 7].split(',')
# # print(lastname)
# # print(len(author_split))
# for aa in range(len(author_split)):
# test = lastname in author_split[aa]
# if test == True:
# order = aa + 1
# lsauthor_order.append(order)
#dfpaper['OR'] = lsauthor_order
# retirando paper repetido, fica para o author com maior importancia
dfpaper_uniq = dfpaper.sort_values(['ORDER_OK'])
dfpaper_uniq.drop_duplicates(['TITLE'], inplace=True)
pathfilename = str('./csv_producao/trabevent_all.csv')
dfpaper.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfpaper['TITLE']), ' artigos')
pathfilename = str('./csv_producao/trabevent_uniq.csv')
dfpaper_uniq.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfpaper_uniq['TITLE']), ' artigos')
# ------------------------------------------------------------
# Producao bibliografica LIVROS
# ------------------------------------------------------------
# df com todos os periodicos
lscsv_book = glob.glob('./csv_producao/*livro.csv')
if len(lscsv_book) < 1:
print('Producao de livros nao encontrada')
else:
dfbook = pd.DataFrame()
lsid = []
for i in range(len(lscsv_book)):
a = pd.read_csv(lscsv_book[i], header=0)
dfbook = dfbook.append(a, ignore_index=False)
iid = fun_idd_unixwind(plat_sys, lscsv_book, i)
# iid = str(lscsv_book[i].split('_')[1].split('/')[1])
idrep = np.repeat(iid, len(a['TITLE']))
lsid.append(idrep)
dfbook['ID'] = np.concatenate(lsid)
lscsv_fullname = glob.glob('./csv_producao/*fullname.csv')
len(lscsv_fullname)
# df com nome completo, sobrenome e iid
dffullname = pd.DataFrame()
for i in range(len(lscsv_fullname)):
a = pd.read_csv(lscsv_fullname[i], header=0, dtype='str')
dffullname = dffullname.append(a, ignore_index=False)
# passando IID para string, para poder comparar com dfbook
# cancelei a ss() pq o read_csv do a esta com dtype='str
# dffullname['ID'] = dffullname['ID'].apply(ss)
dfbook = pd.merge(dfbook, dffullname, on='ID')
dffullname = dffullname.reset_index(drop=True)
dfbook_uniq = dfbook.sort_values(['ORDER_OK'])
dfbook_uniq.drop_duplicates(['TITLE'], inplace=True)
pathfilename = str('./csv_producao/livros_all.csv')
dfbook.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfbook['TITLE']), ' livros')
pathfilename = str('./csv_producao/livros_uniq.csv')
dfbook_uniq.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfbook_uniq['TITLE']), ' livros')
# ------------------------------------------------------------
# Producao bibliografica CAPITULOS
# ------------------------------------------------------------
# df com todos os periodicos
lscsv_chapter = glob.glob('./csv_producao/*capitulo.csv')
if len(lscsv_chapter) < 1:
print('Producao de capitulos nao encontrada')
else:
dfchapter = pd.DataFrame()
lsid = []
for i in range(len(lscsv_chapter)):
a = pd.read_csv(lscsv_chapter[i], header=0)
dfchapter = dfchapter.append(a, ignore_index=False)
iid = fun_idd_unixwind(plat_sys, lscsv_chapter, i)
# iid = str(lscsv_chapter[i].split('_')[1].split('/')[1])
idrep = np.repeat(iid, len(a['TITLE']))
lsid.append(idrep)
dfchapter['ID'] = np.concatenate(lsid)
lscsv_fullname = glob.glob('./csv_producao/*fullname.csv')
len(lscsv_fullname)
# df com nome completo, sobrenome e iid
dffullname = pd.DataFrame()
for i in range(len(lscsv_fullname)):
a = pd.read_csv(lscsv_fullname[i], header=0, dtype='str')
dffullname = dffullname.append(a, ignore_index=False)
# passando IID para string, para poder comparar com dfchapter
# cancelei a ss() pq o read_csv do a esta com dtype='str
# dffullname['ID'] = dffullname['ID'].apply(ss)
dfchapter = pd.merge(dfchapter, dffullname, on='ID')
dffullname = dffullname.reset_index(drop=True)
dfchapter_uniq = dfchapter.sort_values(['ORDER_OK'])
dfchapter_uniq.drop_duplicates(['TITLE'], inplace=True)
pathfilename = str('./csv_producao/capitulos_all.csv')
dfchapter.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfchapter['TITLE']), ' capitulos de livros')
pathfilename = str('./csv_producao/capitulos_uniq.csv')
dfchapter_uniq.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfchapter_uniq['TITLE']), ' capitulos de livros')
# ------------------------------------------------------------
# ORIENTACAO TCC IC MESTRADO DOUTORADO
# ------------------------------------------------------------
# df com todos os periodicos
lscsv_advi = glob.glob('./csv_producao/*advis.csv')
if len(lscsv_advi) < 1:
print('Orientacao para TCC, IC, MESTRADO ou DOUTORADO nao encontrada')
else:
dfadvi = pd.DataFrame()
lsid = []
for i in range(len(lscsv_advi)):
a = pd.read_csv(lscsv_advi[i], header=0)
dfadvi = dfadvi.append(a, ignore_index=False)
iid = fun_idd_unixwind(plat_sys, lscsv_advi, i)
# iid = str(lscsv_advi[i].split('_')[1].split('/')[1])
idrep = np.repeat(iid, len(a['YEAR']))
lsid.append(idrep)
dfadvi['ID'] = np.concatenate(lsid)
lscsv_fullname = glob.glob('./csv_producao/*fullname.csv')
# len(lscsv_fullname)
# df com nome completo, sobrenome e iid
dffullname = pd.DataFrame()
for i in range(len(lscsv_fullname)):
a = pd.read_csv(lscsv_fullname[i], header=0, dtype='str')
dffullname = dffullname.append(a, ignore_index=False)
# passando IID para string, para poder comparar com dfadvi
# cancelei a ss() pq o read_csv do a esta com dtype='str
# dffullname['ID'] = dffullname['ID'].apply(ss)
dfadvi = pd.merge(dfadvi, dffullname, on='ID')
dffullname = dffullname.reset_index(drop=True)
pathfilename = str('./csv_producao/orientacoes_all.csv')
dfadvi.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfadvi['YEAR']), ' orientacoes')
# ------------------------------------------------------------
# ENSINO DISCIPLINAS
# ------------------------------------------------------------
# df com todos os periodicos
lscsv_ensdisc = glob.glob('./csv_producao/*ensdisc.csv')
if len(lscsv_ensdisc) < 1:
print('Disciplinas para ensino nao encontrada')
else:
dfensdis = pd.DataFrame()
lsid = []
for i in range(len(lscsv_ensdisc)):
a = pd.read_csv(lscsv_ensdisc[i], header=0)
dfensdis = dfensdis.append(a, ignore_index=False)
iid = fun_idd_unixwind(plat_sys, lscsv_ensdisc, i)
# iid = str(lscsv_ensdisc[i].split('_')[1].split('/')[1])
idrep = np.repeat(iid, len(a['YEAR_INI']))
lsid.append(idrep)
dfensdis['ID'] = np.concatenate(lsid)
lscsv_fullname = glob.glob('./csv_producao/*fullname.csv')
# len(lscsv_fullname)
# df com nome completo, sobrenome e iid
dffullname = pd.DataFrame()
for i in range(len(lscsv_fullname)):
a = pd.read_csv(lscsv_fullname[i], header=0, dtype='str')
dffullname = dffullname.append(a, ignore_index=False)
# passando IID para string, para poder comparar com dfensdis
# cancelei a ss() pq o read_csv do a esta com dtype='str
# dffullname['ID'] = dffullname['ID'].apply(ss)
dfensdis = pd.merge(dfensdis, dffullname, on='ID')
dffullname = dffullname.reset_index(drop=True)
pathfilename = str('./csv_producao/ensdisc_all.csv')
dfensdis.to_csv(pathfilename, index=False)
print(pathfilename, ' gravado com',
len(dfensdis['YEAR_INI']), ' periodos de disciplinas')