-
Notifications
You must be signed in to change notification settings - Fork 1
/
model_utils.py
346 lines (282 loc) · 14.8 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import torch.nn as nn
import torch
import torch.nn.functional as F
from transformers.models.bert.modeling_bert import BertEncoder, BertConfig
from torch_geometric.nn import RGCNConv, GraphConv
import numpy as np
import math
import copy
class EdgeAtt(nn.Module):
def __init__(self, input_dim, wp, wf):
super(EdgeAtt, self).__init__()
self.wp = wp
self.wf = wf
self.weight = nn.Parameter(torch.zeros((input_dim, input_dim)).float(), requires_grad=True)
var = 2. / (self.weight.size(0) + self.weight.size(1))
self.weight.data.normal_(0, var)
def forward(self, node_features, text_len_tensor, edge_idn):
batch_size, mx_len = node_features.size(0), node_features.size(1)
alphas = []
weight = self.weight.unsqueeze(0).unsqueeze(0)
att_matrix = torch.matmul(weight, node_features.unsqueeze(-1)).squeeze(-1) # [B, L, D_g]
for i in range(batch_size):
cur_len = text_len_tensor[i]
alpha = torch.zeros((mx_len, 110)).to(node_features.device)
for j in range(cur_len):
s = j - self.wp if j - self.wp >= 0 else 0
e = j + self.wf if j + self.wf <= cur_len - 1 else cur_len - 1
tmp = att_matrix[i, s: e + 1, :] # [L', D_g]
feat = node_features[i, j] # [D_g]
score = torch.matmul(tmp, feat)
probs = F.softmax(score, dim=0) # [L']
alpha[j, s: e + 1] = probs
alphas.append(alpha)
return torch.stack(alphas, dim=0)
class GraphNet(nn.Module):
def __init__(self, input_size, hidden_size, n_speakers=2):
super(GraphNet, self).__init__()
self.num_relations = 2 * n_speakers ** 2
self.conv1 = RGCNConv(input_size, hidden_size, self.num_relations, num_bases=30)
self.conv2 = GraphConv(hidden_size, hidden_size)
def forward(self, node_features, edge_index, edge_norm, edge_type):
# for using edge_norm, the version of torch-geometric should be downgrade to 1.4.3
# x = self.conv1(node_features, edge_index, edge_type, edge_norm=edge_norm)
x = self.conv1(node_features, edge_index, edge_type)
x = self.conv2(x, edge_index)
return x
class TencentSelfAtt(nn.Module):
def __init__(self, hidden_size, num_hidden_layers, in_config=None):
super(TencentSelfAtt, self).__init__()
if in_config is None:
config = BertConfig()
else:
config = copy.deepcopy(in_config)
config.hidden_size = hidden_size
config.num_hidden_layers = num_hidden_layers
self.config = config
self.encoder = BertEncoder(config)
def get_extended_attention_mask(self, attention_mask, input_shape, device):
"""Makes broadcastable attention mask and causal mask so that future and maked tokens are ignored.
Arguments:
attention_mask: torch.Tensor with 1 indicating tokens to ATTEND to
input_shape: tuple, shape of input_ids
device: torch.Device, usually self.device
Returns:
torch.Tensor with dtype of attention_mask.dtype
"""
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder:
batch_size, seq_length = input_shape
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
# causal and attention masks must have same type with pytorch version < 1.3
causal_mask = causal_mask.to(attention_mask.dtype)
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
else:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
"Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
input_shape, attention_mask.shape
)
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
# extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask
def get_head_mask(self, head_mask, num_hidden_layers, is_attention_chunked=False):
"""
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
attention_probs has shape bsz x n_heads x N x N
Arguments:
head_mask: torch.Tensor or None: has shape [num_heads] or [num_hidden_layers x num_heads]
num_hidden_layers: int
Returns:
Tensor of shape shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
or list with [None] for each layer
"""
if head_mask is not None:
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
if is_attention_chunked is True:
head_mask = head_mask.unsqueeze(-1)
else:
head_mask = [None] * num_hidden_layers
return head_mask
def forward(self, x, attention_mask=None, head_mask=None):
device = x.device
input_shape = x.size()[:-1]
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
outputs = self.encoder(x, attention_mask=extended_attention_mask, head_mask=head_mask)
return outputs
class MHA(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.attention_head_size = config.hidden_size // config.num_attention_heads
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
# (batch_size, seq_len, all_head_size) -> (batch_size, num_attention_heads, seq_len, attention_head_size)
return x.permute(0, 2, 1, 3)
def forward(self, input_ids_a, input_ids_b, attention_mask=None, head_mask=None, output_attentions=False):
mixed_query_layer = self.query(input_ids_a)
mixed_key_layer = self.key(input_ids_b)
mixed_value_layer = self.value(input_ids_b)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
# (batch_size, num_attention_heads, seq_len, attention_head_size) -> (batch_size, seq_len, num_attention_heads,
# attention_head_size)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
# Should find a better way to do this
w = (
self.dense.weight.t()
.view(self.num_attention_heads, self.attention_head_size, self.hidden_size)
.to(context_layer.dtype)
)
b = self.dense.bias.to(context_layer.dtype)
projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b
projected_context_layer_dropout = self.dropout(projected_context_layer)
layernormed_context_layer = self.LayerNorm(input_ids_a + projected_context_layer_dropout)
return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,)
class FuseLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.linear1 = nn.Linear(4 * config.hidden_size, config.hidden_size)
self.linear2 = nn.Linear(4 * config.hidden_size, config.hidden_size)
self.linear3 = nn.Linear(2 * config.hidden_size, config.hidden_size)
self.activation = nn.ReLU()
self.gate = nn.Sigmoid()
def forward(self, orig, input1, input2):
out1 = self.activation(self.linear1(torch.cat([orig, input1, orig - input1, orig * input1], dim=-1)))
out2 = self.activation(self.linear2(torch.cat([orig, input2, orig - input2, orig * input2], dim=-1)))
fuse_prob = self.gate(self.linear3(torch.cat([out1, out2], dim=-1)))
return fuse_prob * input1 + (1 - fuse_prob) * input2
def batch_graphify(features, speaker_tensor, lengths, wp, wf, edge_type_to_idx, att_model, device):
node_features, edge_index, edge_norm, edge_type = [], [], [], []
batch_size = features.size(0)
length_sum = 0
edge_ind = []
edge_index_lengths = []
for j in range(batch_size):
edge_ind.append(edge_perms(lengths[j].cpu().item(), wp, wf))
edge_weights = att_model(features, lengths, edge_ind)
for j in range(batch_size):
cur_len = lengths[j].item()
node_features.append(features[j, :cur_len, :])
perms = edge_perms(cur_len, wp, wf)
perms_rec = [(item[0] + length_sum, item[1] + length_sum) for item in perms]
length_sum += cur_len
edge_index_lengths.append(len(perms))
for item, item_rec in zip(perms, perms_rec):
edge_index.append(torch.tensor([item_rec[0], item_rec[1]]))
edge_norm.append(edge_weights[j][item[0], item[1]])
speaker1 = speaker_tensor[j, item[0]].item()
speaker2 = speaker_tensor[j, item[1]].item()
if item[0] == length_sum - 1:
c = '0'
else:
c = '1'
edge_type.append(edge_type_to_idx[str(speaker1) + str(speaker2) + str(c)])
node_features = torch.cat(node_features, dim=0).to(device) # [E, D_g]
edge_index = torch.stack(edge_index).t().contiguous().to(device) # [2, E]
edge_norm = torch.stack(edge_norm).to(device) # [E]
edge_type = torch.tensor(edge_type).long().to(device) # [E]
edge_index_lengths = torch.tensor(edge_index_lengths).long().to(device) # [B]
return node_features, edge_index, edge_norm, edge_type, edge_index_lengths
def edge_perms(length, window_past, window_future):
"""
Method to construct the edges of a graph (a utterance) considering the past and future window.
return: list of tuples. tuple -> (vertice(int), neighbor(int))
"""
all_perms = set()
array = np.arange(length)
for j in range(length):
perms = set()
if window_past == -1 and window_future == -1:
eff_array = array
elif window_past == -1: # use all past context
eff_array = array[:min(length, j + window_future + 1)]
elif window_future == -1: # use all future context
eff_array = array[max(0, j - window_past):]
else:
eff_array = array[max(0, j - window_past):min(length, j + window_future + 1)]
for item in eff_array:
perms.add((j, item))
all_perms = all_perms.union(perms)
return list(all_perms)
def extract_utt_feat(features, cls_position, mode='max'):
bsz, turn_num = cls_position.shape
_, seq_len, dim = features.shape
utt_feat = torch.zeros((bsz, turn_num, dim)).to(features.device)
utt_list = []
for i in range(bsz):
feat = features[i] # (token_num, dim)
cur_cls = cls_position[i][cls_position[i] > 0].tolist() + [seq_len - 1] # (turn_num)
utt_list.append(cur_cls)
for x in range(1, len(cur_cls)):
s = cur_cls[x-1]
e = cur_cls[x]
tmp_utt_embed = feat[s:e, :] # (L', D)
if mode == "mean":
tmp_utt_embed = torch.mean(tmp_utt_embed, dim=0) # (D)
elif mode == 'sum':
tmp_utt_embed = torch.sum(tmp_utt_embed, dim=0)
elif mode == 'max':
tmp_utt_embed = torch.max(tmp_utt_embed, dim=0)[0]
else:
raise ValueError("mode must be sum, mean or max, not {}".format(mode))
utt_feat[i, x-1, :] = tmp_utt_embed
return utt_feat, utt_list
def flatten_graph_out(graph_out, cls_list, context_feat=None, text_len=None):
total_turn_num, dim = graph_out.shape
bsz, seq_len, _ = context_feat.shape
assert total_turn_num == sum([len(l) - 1 for l in cls_list])
speaker_gcn_embed = torch.zeros(bsz, seq_len, dim).to(graph_out.device)
cnt = 0
for i in range(bsz):
cl = cls_list[i]
cur_turn_num = text_len[i]
speaker_gcn_embed[i, 0, :] = torch.mean(graph_out[cnt:cnt+cur_turn_num, :], dim=0)
for x in range(1, len(cl)):
s = cl[x-1]
e = cl[x]
speaker_gcn_embed[i, s:e, :] = graph_out[cnt, :]
cnt += 1
return speaker_gcn_embed