-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatautils.py
191 lines (162 loc) · 5.13 KB
/
datautils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
from tqdm import tqdm
import glob
import numpy as np
import torch
import random
from PIL import Image
from transfer_data_loader import Amazon, DSLR, Webcam
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from data_loaders import *
from office_home_dataset import get_art, get_clipart, get_product, get_real_word
data_transforms = {
'train': transforms.Compose([
transforms.Resize([256, 256]),
transforms.RandomCrop((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize([256, 256]),
transforms.CenterCrop((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
def set_seed(seed):
np.random.seed(seed)
torch.random.manual_seed(seed)
def get_imagenet(nsamples):
print("get_imagenet")
folder_path = '/PATH/TO/IMAGENET/Calibration'
image_files = glob.glob(os.path.join(folder_path, '*.JPEG'))
random.shuffle(image_files)
trainloader = []
testenc = []
for i in range(nsamples):
image = Image.open(image_files[i])
trainloader.append(image)
testenc.append(image)
return trainloader, testenc
def get_amazon(nsamples):
print("get amazon")
train_dataset = Amazon(path='/PATH/TO/OFFICE-31/AMAZON', transforms=data_transforms['test'])
# create data loader
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
trainloader = []
testenc = []
i = 0
for images, labels in tqdm(train_loader,total=nsamples):
i = i + 1
trainloader.append(images)
testenc.append(images)
if i == nsamples:
break
return trainloader, testenc
def get_dslr(nsamples):
print("get dslr")
train_dataset = DSLR(path='/PATH/TO/OFFICE-31/DSLR', transforms=data_transforms['test'])
# create data loader
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
trainloader = []
testenc = []
i = 0
for images, labels in tqdm(train_loader,total=nsamples):
i = i + 1
trainloader.append(images)
testenc.append(images)
if i == nsamples:
break
return trainloader, testenc
def get_webcam(nsamples):
print("get webcam")
train_dataset = Webcam(path='/PATH/TO/OFFICE-31/WEBCAM', transforms=data_transforms['test'])
# create data loader
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True)
trainloader = []
testenc = []
i = 0
for images, labels in tqdm(train_loader,total=nsamples):
i = i + 1
trainloader.append(images)
testenc.append(images)
if i == nsamples:
break
return trainloader, testenc
def load_art(nsamples):
print("get office-home art")
# create data loader
train_loader, val_loader = get_art()
trainloader = []
testenc = []
i = 0
for images, labels in tqdm(train_loader,total=nsamples):
i = i + 1
trainloader.append(images)
testenc.append(images)
if i == nsamples:
break
return trainloader, testenc
def load_clipart(nsamples):
print("get office-home clipart")
# create data loader
train_loader, val_loader = get_clipart()
trainloader = []
testenc = []
i = 0
for images, labels in tqdm(train_loader,total=nsamples):
i = i + 1
trainloader.append(images)
testenc.append(images)
if i == nsamples:
break
return trainloader, testenc
def load_product(nsamples):
print("get office-home product")
# create data loader
train_loader, val_loader = get_product()
trainloader = []
testenc = []
i = 0
for images, labels in tqdm(train_loader,total=nsamples):
i = i + 1
trainloader.append(images)
testenc.append(images)
if i == nsamples:
break
return trainloader, testenc
def load_real_word(nsamples):
print("get office-home real word")
# create data loader
train_loader, val_loader = get_real_word()
trainloader = []
testenc = []
i = 0
for images, labels in tqdm(train_loader,total=nsamples):
i = i + 1
trainloader.append(images)
testenc.append(images)
if i == nsamples:
break
return trainloader, testenc
def get_loaders(
name, nsamples=32
):
if 'ImageNet' in name:
return get_imagenet(nsamples)
elif 'amazon' in name:
return get_amazon(nsamples)
elif 'dslr' in name:
return get_dslr(nsamples)
elif 'webcam' in name:
return get_webcam(nsamples)
elif 'clipart' in name:
return load_clipart(nsamples)
elif 'art' in name:
return load_art(nsamples)
elif 'product' in name:
return load_product(nsamples)
elif 'real_word' in name:
return load_real_word(nsamples)