-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_data_loader.py
110 lines (85 loc) · 2.44 KB
/
transfer_data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import random
from glob import glob
from PIL import Image
import torch
random.seed(42)
torch.manual_seed(42)
classes = [
"back_pack",
"bike",
"bike_helmet",
"bookcase",
"bottle",
"calculator",
"desk_chair",
"desk_lamp",
"desktop_computer",
"file_cabinet",
"headphones",
"keyboard",
"laptop_computer",
"letter_tray",
"mobile_phone",
"monitor",
"mouse",
"mug",
"paper_notebook",
"pen",
"phone",
"printer",
"projector",
"punchers",
"ring_binder",
"ruler",
"scissors",
"speaker",
"stapler",
"tape_dispenser",
"trash_can",
]
class Amazon(torch.utils.data.Dataset):
def __init__(self, path, transforms=None, batch_size=16):
self.path = path
self.files = glob(os.path.join(path, "**", "*.jpg"), recursive=True)
self.transforms = transforms
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
file = self.files[idx]
img = Image.open(file)
label = file.split(self.path)[-1].split("/")[-2] # .split("/")[0]
label = classes.index(label)
if self.transforms is not None:
img = self.transforms(img)
return img, label
class Webcam(torch.utils.data.Dataset):
def __init__(self, path, transforms=None, batch_size=16):
self.path = path
self.files = glob(os.path.join(path, "**", "*.jpg"), recursive=True)
self.transforms = transforms
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
file = self.files[idx]
img = Image.open(file)
label = file.split(self.path)[-1].split("/images/")[-1].split("/")[0]
label = classes.index(label)
if self.transforms is not None:
img = self.transforms(img)
return img, label
class DSLR(torch.utils.data.Dataset):
def __init__(self, path, transforms=None, batch_size=16):
self.path = path
self.files = glob(os.path.join(path, "**", "*.jpg"), recursive=True)
self.transforms = transforms
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
file = self.files[idx]
img = Image.open(file)
label = file.split(self.path)[-1].split("/images/")[-1].split("/")[0]
label = classes.index(label)
if self.transforms is not None:
img = self.transforms(img)
return img, label