-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
156 lines (132 loc) · 5.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import cv2
import numpy as np
import csv
import tensorflow
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from keras.models import Sequential
from keras.layers import Flatten, Dense, Conv2D, MaxPooling2D
from keras.layers import Lambda, Cropping2D, Dropout, ELU
from keras.layers import BatchNormalization
from keras.optimizers import Adam
from keras.callbacks import EarlyStopping, ModelCheckpoint
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def read_csv(file):
lines = []
with open(file) as csvfile:
load = csv.reader(csvfile)
for line in load:
lines.append(line)
return lines[1:]
def load_image(lines_path, image_path):
images = []
angles = []
for line in lines_path:
for i in range(3):
source_path = line[i]
filename = source_path.split('/')[-1]
current_path = image_path + filename
image = mpimg.imread(current_path)
images.append(image)
angle = float(line[3])
if i == 0:
angles.append(angle)
elif i == 1:
angles.append(angle + 0.20)
else:
angles.append(angle - 0.20)
X_train = np.array(images)
y_train = np.array(angles)
shuffle(X_train, y_train)
X_train, X_validation, y_train, y_validation = train_test_split(X_train, y_train, test_size=0.2, random_state=0)
return X_train, X_validation, y_train, y_validation
def image_generator(X, y):
X_w_generator = []
y_w_generator = []
for X_generate, y_generate in zip(X, y):
X_w_generator.append(X_generate)
y_w_generator.append(y_generate)
extra_X = cv2.flip(X_generate, 1)
extra_y = y_generate * (-1.0)
X_w_generator.append(extra_X)
y_w_generator.append(extra_y)
X_total = np.array(X_w_generator)
y_total = np.array(y_w_generator)
return shuffle(X_total, y_total)
def resize_img(img):
from keras.backend import tf as ktf
resize = ktf.image.resize_images(img, (60, 120))
resize = resize / 255.0 - 0.5
return resize
def show_steering(y_train, y_valid):
max_degree = 25
degree_per_steering =10
n_classes = max_degree * degree_per_steering
fig, axes = plt.subplots(2, 1, figsize=(8, 8))
plt.subplots_adjust(left=0, right=0.95, top=0.9, bottom=0.25)
ax0, ax1= axes.flatten()
ax0.hist(y_train, bins=n_classes, histtype='bar', color='blue', rwidth=0.6, label='train')
ax0.set_title('Number of training')
ax0.set_xlabel('Steering Angle')
ax0.set_ylabel('Total Image')
ax1.hist(y_valid, bins=n_classes, histtype='bar', color='red', rwidth=0.6, label='valid')
ax1.set_title('Number of validation')
ax1.set_xlabel('Steering Angle')
ax1.set_ylabel('Total Image')
fig.tight_layout()
plt.show()
# Load csv file and images
file = 'D:/97_DL/VS-Behavior-Cloning/Behavior-Cloning/Behavior-Cloning/data/data_1/driving_log.csv'
image_path = 'D:/97_DL/VS-Behavior-Cloning/Behavior-Cloning/Behavior-Cloning/data/data_1/IMG/'
lines_path = read_csv(file)
# Original traning examples and labels
X_train, X_validation, y_train, y_validation = load_image(lines_path, image_path)
assert len(X_train) == len(y_train), "ERROR: Training example size error".format(len(X_train), len(y_train))
assert len(X_validation) == len(y_validation), "ERROR: Validation example size error".format(len(X_validation), len(y_validation))
print("Training examples: {}\nValidation examples: {}".format(len(X_train), len(X_validation)))
show_steering(y_train, y_validation)
# After image generator
X_train_gen, y_train_gen = image_generator(X_train, y_train)
X_valid_gen, y_valid_gen = image_generator(X_validation, y_validation)
assert len(X_train_gen) == len(y_train_gen), "ERROR: Total training example size error".format(len(X_train_gen), len(y_train_gen))
assert len(X_valid_gen) == len(y_valid_gen), "ERROR: Total validation example size error".format(len(X_valid_gen), len(y_valid_gen))
print("Total training examples: {}\nTotal validation examples: {}".format(len(X_train_gen), len(X_valid_gen)))
show_steering(y_train_gen, y_valid_gen)
# Model
model = Sequential()
model.add(Cropping2D(cropping=((75,25),(0,0)), input_shape=(X_train_gen[0].shape[0], X_train_gen[0].shape[1], X_train_gen[0].shape[2]), data_format="channels_last"))
model.add(Lambda(resize_img, input_shape=(160,320,3), output_shape=(60,120,3)))
model.add(Conv2D(3, (1,1), padding='same'))
model.add(ELU())
model.add(BatchNormalization())
model.add(Conv2D(16, (5,5), strides=(2,2), padding='same'))
model.add(ELU())
model.add(BatchNormalization())
model.add(Conv2D(32, (5,5), strides=(2,2), padding='same'))
model.add(ELU())
model.add(BatchNormalization())
model.add(Conv2D(64, (3,3), strides=(2,2), padding='same'))
model.add(ELU())
model.add(BatchNormalization())
model.add(Conv2D(128, (3,3), strides=(2,2), padding='same'))
model.add(ELU())
model.add(BatchNormalization())
model.add(Flatten())
model.add(ELU())
model.add(Dense(512))
model.add(Dropout(0.2))
model.add(ELU())
model.add(Dense(100))
model.add(Dropout(0.5))
model.add(ELU())
model.add(Dense(10))
model.add(Dropout(0.5))
model.add(ELU())
model.add(Dense(1))
adam = Adam(lr=1e-5)
model.compile(optimizer=adam, loss='mse', metrics=['accuracy'])
model.summary()
checkpointer = ModelCheckpoint('model.h5', monitor='val_loss', verbose=1, save_best_only=True)
results = model.fit(X_train_gen, y_train_gen, validation_data=(X_valid_gen, y_valid_gen),batch_size=32, epochs=50, verbose =1)
model.save('D:/97_DL/VS-Behavior-Cloning/Behavior-Cloning/Behavior-Cloning/model.h5')