-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.txt
573 lines (573 loc) · 23.9 KB
/
model.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
Experiment dir : eval-EXP-cifar10-20190815-183831
08/15 06:38:31 PM => load data 'cifar10'
Files already downloaded and verified
Files already downloaded and verified
08/15 06:38:32 PM update lrs: '[150, 250, 350]'
08/15 06:38:32 PM => creating model 'mixnet-s'
MixNet(
(_relu): ReLU()
(_mix_blocks): Sequential(
(0): MixnetBlock(
(_act_fn): ReLU()
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(16, 16, kernel_size=(3, 3), stride=(1, 1), groups=16, bias=False)
)
)
(_bn1): BatchNorm2d(16, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(16, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(16, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(1): MixnetBlock(
(_act_fn): ReLU()
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(8, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(8, 48, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(96, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(96, 96, kernel_size=(3, 3), stride=(2, 2), groups=96, bias=False)
)
)
(_bn1): BatchNorm2d(96, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(48, 12, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(48, 12, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(24, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(2): MixnetBlock(
(_act_fn): ReLU()
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(12, 36, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(12, 36, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(72, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(72, 72, kernel_size=(3, 3), stride=(1, 1), groups=72, bias=False)
)
)
(_bn1): BatchNorm2d(72, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(36, 12, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(36, 12, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(24, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(3): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(144, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(48, 48, kernel_size=(3, 3), stride=(2, 2), groups=48, bias=False)
(1): Conv2dSamePadding(48, 48, kernel_size=(5, 5), stride=(2, 2), groups=48, bias=False)
(2): Conv2dSamePadding(48, 48, kernel_size=(7, 7), stride=(2, 2), groups=48, bias=False)
)
)
(_bn1): BatchNorm2d(144, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(144, 12, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(12, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(144, 40, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(40, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(4): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(20, 120, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(20, 120, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(240, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(120, 120, kernel_size=(3, 3), stride=(1, 1), groups=120, bias=False)
(1): Conv2dSamePadding(120, 120, kernel_size=(5, 5), stride=(1, 1), groups=120, bias=False)
)
)
(_bn1): BatchNorm2d(240, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(240, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(20, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(120, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(120, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(40, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(5): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(20, 120, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(20, 120, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(240, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(120, 120, kernel_size=(3, 3), stride=(1, 1), groups=120, bias=False)
(1): Conv2dSamePadding(120, 120, kernel_size=(5, 5), stride=(1, 1), groups=120, bias=False)
)
)
(_bn1): BatchNorm2d(240, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(240, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(20, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(120, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(120, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(40, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(6): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(20, 120, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(20, 120, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(240, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(120, 120, kernel_size=(3, 3), stride=(1, 1), groups=120, bias=False)
(1): Conv2dSamePadding(120, 120, kernel_size=(5, 5), stride=(1, 1), groups=120, bias=False)
)
)
(_bn1): BatchNorm2d(240, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(240, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(20, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(120, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(120, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(40, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(7): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(240, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(80, 80, kernel_size=(3, 3), stride=(2, 2), groups=80, bias=False)
(1): Conv2dSamePadding(80, 80, kernel_size=(5, 5), stride=(2, 2), groups=80, bias=False)
(2): Conv2dSamePadding(80, 80, kernel_size=(7, 7), stride=(2, 2), groups=80, bias=False)
)
)
(_bn1): BatchNorm2d(240, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(240, 10, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(10, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(120, 40, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(120, 40, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(80, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(8): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(80, 480, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(480, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(240, 240, kernel_size=(3, 3), stride=(1, 1), groups=240, bias=False)
(1): Conv2dSamePadding(240, 240, kernel_size=(5, 5), stride=(1, 1), groups=240, bias=False)
)
)
(_bn1): BatchNorm2d(480, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(480, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(20, 480, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(240, 40, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(240, 40, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(80, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(9): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(80, 480, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(480, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(240, 240, kernel_size=(3, 3), stride=(1, 1), groups=240, bias=False)
(1): Conv2dSamePadding(240, 240, kernel_size=(5, 5), stride=(1, 1), groups=240, bias=False)
)
)
(_bn1): BatchNorm2d(480, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(480, 20, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(20, 480, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(240, 40, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(240, 40, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(80, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(10): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(40, 240, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(480, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(160, 160, kernel_size=(3, 3), stride=(1, 1), groups=160, bias=False)
(1): Conv2dSamePadding(160, 160, kernel_size=(5, 5), stride=(1, 1), groups=160, bias=False)
(2): Conv2dSamePadding(160, 160, kernel_size=(7, 7), stride=(1, 1), groups=160, bias=False)
)
)
(_bn1): BatchNorm2d(480, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(480, 40, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(40, 480, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(240, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(240, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(120, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(11): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(60, 180, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(60, 180, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(360, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(90, 90, kernel_size=(3, 3), stride=(1, 1), groups=90, bias=False)
(1): Conv2dSamePadding(90, 90, kernel_size=(5, 5), stride=(1, 1), groups=90, bias=False)
(2): Conv2dSamePadding(90, 90, kernel_size=(7, 7), stride=(1, 1), groups=90, bias=False)
(3): Conv2dSamePadding(90, 90, kernel_size=(9, 9), stride=(1, 1), groups=90, bias=False)
)
)
(_bn1): BatchNorm2d(360, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(360, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(60, 360, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(180, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(180, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(120, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(12): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(60, 180, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(60, 180, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(360, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(90, 90, kernel_size=(3, 3), stride=(1, 1), groups=90, bias=False)
(1): Conv2dSamePadding(90, 90, kernel_size=(5, 5), stride=(1, 1), groups=90, bias=False)
(2): Conv2dSamePadding(90, 90, kernel_size=(7, 7), stride=(1, 1), groups=90, bias=False)
(3): Conv2dSamePadding(90, 90, kernel_size=(9, 9), stride=(1, 1), groups=90, bias=False)
)
)
(_bn1): BatchNorm2d(360, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(360, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(60, 360, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(180, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(180, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(120, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(13): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(120, 720, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(720, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(144, 144, kernel_size=(3, 3), stride=(2, 2), groups=144, bias=False)
(1): Conv2dSamePadding(144, 144, kernel_size=(5, 5), stride=(2, 2), groups=144, bias=False)
(2): Conv2dSamePadding(144, 144, kernel_size=(7, 7), stride=(2, 2), groups=144, bias=False)
(3): Conv2dSamePadding(144, 144, kernel_size=(9, 9), stride=(2, 2), groups=144, bias=False)
(4): Conv2dSamePadding(144, 144, kernel_size=(11, 11), stride=(2, 2), groups=144, bias=False)
)
)
(_bn1): BatchNorm2d(720, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(720, 60, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(60, 720, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(720, 200, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(200, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(14): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(200, 1200, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(1200, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(300, 300, kernel_size=(3, 3), stride=(1, 1), groups=300, bias=False)
(1): Conv2dSamePadding(300, 300, kernel_size=(5, 5), stride=(1, 1), groups=300, bias=False)
(2): Conv2dSamePadding(300, 300, kernel_size=(7, 7), stride=(1, 1), groups=300, bias=False)
(3): Conv2dSamePadding(300, 300, kernel_size=(9, 9), stride=(1, 1), groups=300, bias=False)
)
)
(_bn1): BatchNorm2d(1200, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(1200, 100, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(100, 1200, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(600, 100, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(600, 100, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(200, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
(15): MixnetBlock(
(_act_fn): Swish(
(sig): Sigmoid()
)
(_expand_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(200, 1200, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn0): BatchNorm2d(1200, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_depthwise_conv): MDConv(
(_convs): ModuleList(
(0): Conv2dSamePadding(300, 300, kernel_size=(3, 3), stride=(1, 1), groups=300, bias=False)
(1): Conv2dSamePadding(300, 300, kernel_size=(5, 5), stride=(1, 1), groups=300, bias=False)
(2): Conv2dSamePadding(300, 300, kernel_size=(7, 7), stride=(1, 1), groups=300, bias=False)
(3): Conv2dSamePadding(300, 300, kernel_size=(9, 9), stride=(1, 1), groups=300, bias=False)
)
)
(_bn1): BatchNorm2d(1200, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_se_reduce): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(1200, 100, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_se_expand): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(100, 1200, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(sigmoid): Sigmoid()
(_project_conv): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(600, 100, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): Conv2dSamePadding(600, 100, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn2): BatchNorm2d(200, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
)
)
(_conv_stem): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(3, 16, kernel_size=(3, 3), stride=(2, 2), bias=False)
)
)
(_bn0): BatchNorm2d(16, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(_conv_head): GroupedConv2D(
(_convs): ModuleList(
(0): Conv2dSamePadding(200, 1536, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
)
(_bn1): BatchNorm2d(1536, eps=0.001, momentum=0.99, affine=True, track_running_stats=True)
(avgpool): AvgPool2d(kernel_size=1, stride=1, padding=0)
(classifier): Linear(in_features=1536, out_features=10, bias=True)
(dropout): Dropout(p=0.2)
)