forked from CesiumGS/cesium
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOrientedBoundingBox.js
796 lines (686 loc) · 33 KB
/
OrientedBoundingBox.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
define([
'./BoundingSphere',
'./Cartesian2',
'./Cartesian3',
'./Cartographic',
'./Check',
'./defaultValue',
'./defined',
'./DeveloperError',
'./Ellipsoid',
'./EllipsoidTangentPlane',
'./Intersect',
'./Interval',
'./Math',
'./Matrix3',
'./Plane',
'./Rectangle'
], function(
BoundingSphere,
Cartesian2,
Cartesian3,
Cartographic,
Check,
defaultValue,
defined,
DeveloperError,
Ellipsoid,
EllipsoidTangentPlane,
Intersect,
Interval,
CesiumMath,
Matrix3,
Plane,
Rectangle) {
'use strict';
/**
* Creates an instance of an OrientedBoundingBox.
* An OrientedBoundingBox of some object is a closed and convex cuboid. It can provide a tighter bounding volume than {@link BoundingSphere} or {@link AxisAlignedBoundingBox} in many cases.
* @alias OrientedBoundingBox
* @constructor
*
* @param {Cartesian3} [center=Cartesian3.ZERO] The center of the box.
* @param {Matrix3} [halfAxes=Matrix3.ZERO] The three orthogonal half-axes of the bounding box.
* Equivalently, the transformation matrix, to rotate and scale a 0x0x0
* cube centered at the origin.
*
*
* @example
* // Create an OrientedBoundingBox using a transformation matrix, a position where the box will be translated, and a scale.
* var center = new Cesium.Cartesian3(1.0, 0.0, 0.0);
* var halfAxes = Cesium.Matrix3.fromScale(new Cesium.Cartesian3(1.0, 3.0, 2.0), new Cesium.Matrix3());
*
* var obb = new Cesium.OrientedBoundingBox(center, halfAxes);
*
* @see BoundingSphere
* @see BoundingRectangle
*/
function OrientedBoundingBox(center, halfAxes) {
/**
* The center of the box.
* @type {Cartesian3}
* @default {@link Cartesian3.ZERO}
*/
this.center = Cartesian3.clone(defaultValue(center, Cartesian3.ZERO));
/**
* The transformation matrix, to rotate the box to the right position.
* @type {Matrix3}
* @default {@link Matrix3.ZERO}
*/
this.halfAxes = Matrix3.clone(defaultValue(halfAxes, Matrix3.ZERO));
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
OrientedBoundingBox.packedLength = Cartesian3.packedLength + Matrix3.packedLength;
/**
* Stores the provided instance into the provided array.
*
* @param {OrientedBoundingBox} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
OrientedBoundingBox.pack = function(value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
Check.typeOf.object('value', value);
Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
Cartesian3.pack(value.center, array, startingIndex);
Matrix3.pack(value.halfAxes, array, startingIndex + Cartesian3.packedLength);
return array;
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {OrientedBoundingBox} [result] The object into which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
*/
OrientedBoundingBox.unpack = function(array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
Check.defined('array', array);
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
if (!defined(result)) {
result = new OrientedBoundingBox();
}
Cartesian3.unpack(array, startingIndex, result.center);
Matrix3.unpack(array, startingIndex + Cartesian3.packedLength, result.halfAxes);
return result;
};
var scratchCartesian1 = new Cartesian3();
var scratchCartesian2 = new Cartesian3();
var scratchCartesian3 = new Cartesian3();
var scratchCartesian4 = new Cartesian3();
var scratchCartesian5 = new Cartesian3();
var scratchCartesian6 = new Cartesian3();
var scratchCovarianceResult = new Matrix3();
var scratchEigenResult = {
unitary : new Matrix3(),
diagonal : new Matrix3()
};
/**
* Computes an instance of an OrientedBoundingBox of the given positions.
* This is an implementation of Stefan Gottschalk's Collision Queries using Oriented Bounding Boxes solution (PHD thesis).
* Reference: http://gamma.cs.unc.edu/users/gottschalk/main.pdf
*
* @param {Cartesian3[]} [positions] List of {@link Cartesian3} points that the bounding box will enclose.
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
*
* @example
* // Compute an object oriented bounding box enclosing two points.
* var box = Cesium.OrientedBoundingBox.fromPoints([new Cesium.Cartesian3(2, 0, 0), new Cesium.Cartesian3(-2, 0, 0)]);
*/
OrientedBoundingBox.fromPoints = function(positions, result) {
if (!defined(result)) {
result = new OrientedBoundingBox();
}
if (!defined(positions) || positions.length === 0) {
result.halfAxes = Matrix3.ZERO;
result.center = Cartesian3.ZERO;
return result;
}
var i;
var length = positions.length;
var meanPoint = Cartesian3.clone(positions[0], scratchCartesian1);
for (i = 1; i < length; i++) {
Cartesian3.add(meanPoint, positions[i], meanPoint);
}
var invLength = 1.0 / length;
Cartesian3.multiplyByScalar(meanPoint, invLength, meanPoint);
var exx = 0.0;
var exy = 0.0;
var exz = 0.0;
var eyy = 0.0;
var eyz = 0.0;
var ezz = 0.0;
var p;
for (i = 0; i < length; i++) {
p = Cartesian3.subtract(positions[i], meanPoint, scratchCartesian2);
exx += p.x * p.x;
exy += p.x * p.y;
exz += p.x * p.z;
eyy += p.y * p.y;
eyz += p.y * p.z;
ezz += p.z * p.z;
}
exx *= invLength;
exy *= invLength;
exz *= invLength;
eyy *= invLength;
eyz *= invLength;
ezz *= invLength;
var covarianceMatrix = scratchCovarianceResult;
covarianceMatrix[0] = exx;
covarianceMatrix[1] = exy;
covarianceMatrix[2] = exz;
covarianceMatrix[3] = exy;
covarianceMatrix[4] = eyy;
covarianceMatrix[5] = eyz;
covarianceMatrix[6] = exz;
covarianceMatrix[7] = eyz;
covarianceMatrix[8] = ezz;
var eigenDecomposition = Matrix3.computeEigenDecomposition(covarianceMatrix, scratchEigenResult);
var rotation = Matrix3.clone(eigenDecomposition.unitary, result.halfAxes);
var v1 = Matrix3.getColumn(rotation, 0, scratchCartesian4);
var v2 = Matrix3.getColumn(rotation, 1, scratchCartesian5);
var v3 = Matrix3.getColumn(rotation, 2, scratchCartesian6);
var u1 = -Number.MAX_VALUE;
var u2 = -Number.MAX_VALUE;
var u3 = -Number.MAX_VALUE;
var l1 = Number.MAX_VALUE;
var l2 = Number.MAX_VALUE;
var l3 = Number.MAX_VALUE;
for (i = 0; i < length; i++) {
p = positions[i];
u1 = Math.max(Cartesian3.dot(v1, p), u1);
u2 = Math.max(Cartesian3.dot(v2, p), u2);
u3 = Math.max(Cartesian3.dot(v3, p), u3);
l1 = Math.min(Cartesian3.dot(v1, p), l1);
l2 = Math.min(Cartesian3.dot(v2, p), l2);
l3 = Math.min(Cartesian3.dot(v3, p), l3);
}
v1 = Cartesian3.multiplyByScalar(v1, 0.5 * (l1 + u1), v1);
v2 = Cartesian3.multiplyByScalar(v2, 0.5 * (l2 + u2), v2);
v3 = Cartesian3.multiplyByScalar(v3, 0.5 * (l3 + u3), v3);
var center = Cartesian3.add(v1, v2, result.center);
Cartesian3.add(center, v3, center);
var scale = scratchCartesian3;
scale.x = u1 - l1;
scale.y = u2 - l2;
scale.z = u3 - l3;
Cartesian3.multiplyByScalar(scale, 0.5, scale);
Matrix3.multiplyByScale(result.halfAxes, scale, result.halfAxes);
return result;
};
var scratchOffset = new Cartesian3();
var scratchScale = new Cartesian3();
/**
* Computes an OrientedBoundingBox given extents in the east-north-up space of the tangent plane.
*
* @param {Plane} tangentPlane The tangent place corresponding to east-north-up.
* @param {Number} minimumX Minimum X extent in tangent plane space.
* @param {Number} maximumX Maximum X extent in tangent plane space.
* @param {Number} minimumY Minimum Y extent in tangent plane space.
* @param {Number} maximumY Maximum Y extent in tangent plane space.
* @param {Number} minimumZ Minimum Z extent in tangent plane space.
* @param {Number} maximumZ Maximum Z extent in tangent plane space.
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
*/
function fromTangentPlaneExtents(tangentPlane, minimumX, maximumX, minimumY, maximumY, minimumZ, maximumZ, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(minimumX) ||
!defined(maximumX) ||
!defined(minimumY) ||
!defined(maximumY) ||
!defined(minimumZ) ||
!defined(maximumZ)) {
throw new DeveloperError('all extents (minimum/maximum X/Y/Z) are required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new OrientedBoundingBox();
}
var halfAxes = result.halfAxes;
Matrix3.setColumn(halfAxes, 0, tangentPlane.xAxis, halfAxes);
Matrix3.setColumn(halfAxes, 1, tangentPlane.yAxis, halfAxes);
Matrix3.setColumn(halfAxes, 2, tangentPlane.zAxis, halfAxes);
var centerOffset = scratchOffset;
centerOffset.x = (minimumX + maximumX) / 2.0;
centerOffset.y = (minimumY + maximumY) / 2.0;
centerOffset.z = (minimumZ + maximumZ) / 2.0;
var scale = scratchScale;
scale.x = (maximumX - minimumX) / 2.0;
scale.y = (maximumY - minimumY) / 2.0;
scale.z = (maximumZ - minimumZ) / 2.0;
var center = result.center;
centerOffset = Matrix3.multiplyByVector(halfAxes, centerOffset, centerOffset);
Cartesian3.add(tangentPlane.origin, centerOffset, center);
Matrix3.multiplyByScale(halfAxes, scale, halfAxes);
return result;
}
var scratchRectangleCenterCartographic = new Cartographic();
var scratchRectangleCenter = new Cartesian3();
var perimeterCartographicScratch = [new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic(), new Cartographic()];
var perimeterCartesianScratch = [new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3(), new Cartesian3()];
var perimeterProjectedScratch = [new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2(), new Cartesian2()];
/**
* Computes an OrientedBoundingBox that bounds a {@link Rectangle} on the surface of an {@link Ellipsoid}.
* There are no guarantees about the orientation of the bounding box.
*
* @param {Rectangle} rectangle The cartographic rectangle on the surface of the ellipsoid.
* @param {Number} [minimumHeight=0.0] The minimum height (elevation) within the tile.
* @param {Number} [maximumHeight=0.0] The maximum height (elevation) within the tile.
* @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the rectangle is defined.
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if none was provided.
*
* @exception {DeveloperError} rectangle.width must be between 0 and pi.
* @exception {DeveloperError} rectangle.height must be between 0 and pi.
* @exception {DeveloperError} ellipsoid must be an ellipsoid of revolution (<code>radii.x == radii.y</code>)
*/
OrientedBoundingBox.fromRectangle = function(rectangle, minimumHeight, maximumHeight, ellipsoid, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(rectangle)) {
throw new DeveloperError('rectangle is required');
}
if (rectangle.width < 0.0 || rectangle.width > CesiumMath.TWO_PI) {
throw new DeveloperError('Rectangle width must be between 0 and 2*pi');
}
if (rectangle.height < 0.0 || rectangle.height > CesiumMath.PI) {
throw new DeveloperError('Rectangle height must be between 0 and pi');
}
if (defined(ellipsoid) && !CesiumMath.equalsEpsilon(ellipsoid.radii.x, ellipsoid.radii.y, CesiumMath.EPSILON15)) {
throw new DeveloperError('Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)');
}
//>>includeEnd('debug');
minimumHeight = defaultValue(minimumHeight, 0.0);
maximumHeight = defaultValue(maximumHeight, 0.0);
ellipsoid = defaultValue(ellipsoid, Ellipsoid.WGS84);
// The bounding box will be aligned with the tangent plane at the center of the rectangle.
var tangentPointCartographic = Rectangle.center(rectangle, scratchRectangleCenterCartographic);
var tangentPoint = ellipsoid.cartographicToCartesian(tangentPointCartographic, scratchRectangleCenter);
var tangentPlane = new EllipsoidTangentPlane(tangentPoint, ellipsoid);
var plane = tangentPlane.plane;
// Corner arrangement:
// N/+y
// [0] [1] [2]
// W/-x [7] [3] E/+x
// [6] [5] [4]
// S/-y
// "C" refers to the central lat/long, which by default aligns with the tangent point (above).
// If the rectangle spans the equator, CW and CE are instead aligned with the equator.
var perimeterNW = perimeterCartographicScratch[0];
var perimeterNC = perimeterCartographicScratch[1];
var perimeterNE = perimeterCartographicScratch[2];
var perimeterCE = perimeterCartographicScratch[3];
var perimeterSE = perimeterCartographicScratch[4];
var perimeterSC = perimeterCartographicScratch[5];
var perimeterSW = perimeterCartographicScratch[6];
var perimeterCW = perimeterCartographicScratch[7];
var lonCenter = tangentPointCartographic.longitude;
var latCenter = (rectangle.south < 0.0 && rectangle.north > 0.0) ? 0.0 : tangentPointCartographic.latitude;
perimeterSW.latitude = perimeterSC.latitude = perimeterSE.latitude = rectangle.south;
perimeterCW.latitude = perimeterCE.latitude = latCenter;
perimeterNW.latitude = perimeterNC.latitude = perimeterNE.latitude = rectangle.north;
perimeterSW.longitude = perimeterCW.longitude = perimeterNW.longitude = rectangle.west;
perimeterSC.longitude = perimeterNC.longitude = lonCenter;
perimeterSE.longitude = perimeterCE.longitude = perimeterNE.longitude = rectangle.east;
// Compute XY extents using the rectangle at maximum height
perimeterNE.height = perimeterNC.height = perimeterNW.height = perimeterCW.height = perimeterSW.height = perimeterSC.height = perimeterSE.height = perimeterCE.height = maximumHeight;
ellipsoid.cartographicArrayToCartesianArray(perimeterCartographicScratch, perimeterCartesianScratch);
tangentPlane.projectPointsToNearestOnPlane(perimeterCartesianScratch, perimeterProjectedScratch);
// See the `perimeterXX` definitions above for what these are
var minX = Math.min(perimeterProjectedScratch[6].x, perimeterProjectedScratch[7].x, perimeterProjectedScratch[0].x);
var maxX = Math.max(perimeterProjectedScratch[2].x, perimeterProjectedScratch[3].x, perimeterProjectedScratch[4].x);
var minY = Math.min(perimeterProjectedScratch[4].y, perimeterProjectedScratch[5].y, perimeterProjectedScratch[6].y);
var maxY = Math.max(perimeterProjectedScratch[0].y, perimeterProjectedScratch[1].y, perimeterProjectedScratch[2].y);
// Compute minimum Z using the rectangle at minimum height
perimeterNE.height = perimeterNW.height = perimeterSE.height = perimeterSW.height = minimumHeight;
ellipsoid.cartographicArrayToCartesianArray(perimeterCartographicScratch, perimeterCartesianScratch);
var minZ = Math.min(Plane.getPointDistance(plane, perimeterCartesianScratch[0]),
Plane.getPointDistance(plane, perimeterCartesianScratch[2]),
Plane.getPointDistance(plane, perimeterCartesianScratch[4]),
Plane.getPointDistance(plane, perimeterCartesianScratch[6]));
var maxZ = maximumHeight; // Since the tangent plane touches the surface at height = 0, this is okay
return fromTangentPlaneExtents(tangentPlane, minX, maxX, minY, maxY, minZ, maxZ, result);
};
/**
* Duplicates a OrientedBoundingBox instance.
*
* @param {OrientedBoundingBox} box The bounding box to duplicate.
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if none was provided. (Returns undefined if box is undefined)
*/
OrientedBoundingBox.clone = function(box, result) {
if (!defined(box)) {
return undefined;
}
if (!defined(result)) {
return new OrientedBoundingBox(box.center, box.halfAxes);
}
Cartesian3.clone(box.center, result.center);
Matrix3.clone(box.halfAxes, result.halfAxes);
return result;
};
/**
* Determines which side of a plane the oriented bounding box is located.
*
* @param {OrientedBoundingBox} box The oriented bounding box to test.
* @param {Plane} plane The plane to test against.
* @returns {Intersect} {@link Intersect.INSIDE} if the entire box is on the side of the plane
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire box is
* on the opposite side, and {@link Intersect.INTERSECTING} if the box
* intersects the plane.
*/
OrientedBoundingBox.intersectPlane = function(box, plane) {
//>>includeStart('debug', pragmas.debug);
if (!defined(box)) {
throw new DeveloperError('box is required.');
}
if (!defined(plane)) {
throw new DeveloperError('plane is required.');
}
//>>includeEnd('debug');
var center = box.center;
var normal = plane.normal;
var halfAxes = box.halfAxes;
var normalX = normal.x, normalY = normal.y, normalZ = normal.z;
// plane is used as if it is its normal; the first three components are assumed to be normalized
var radEffective = Math.abs(normalX * halfAxes[Matrix3.COLUMN0ROW0] + normalY * halfAxes[Matrix3.COLUMN0ROW1] + normalZ * halfAxes[Matrix3.COLUMN0ROW2]) +
Math.abs(normalX * halfAxes[Matrix3.COLUMN1ROW0] + normalY * halfAxes[Matrix3.COLUMN1ROW1] + normalZ * halfAxes[Matrix3.COLUMN1ROW2]) +
Math.abs(normalX * halfAxes[Matrix3.COLUMN2ROW0] + normalY * halfAxes[Matrix3.COLUMN2ROW1] + normalZ * halfAxes[Matrix3.COLUMN2ROW2]);
var distanceToPlane = Cartesian3.dot(normal, center) + plane.distance;
if (distanceToPlane <= -radEffective) {
// The entire box is on the negative side of the plane normal
return Intersect.OUTSIDE;
} else if (distanceToPlane >= radEffective) {
// The entire box is on the positive side of the plane normal
return Intersect.INSIDE;
}
return Intersect.INTERSECTING;
};
var scratchCartesianU = new Cartesian3();
var scratchCartesianV = new Cartesian3();
var scratchCartesianW = new Cartesian3();
var scratchPPrime = new Cartesian3();
/**
* Computes the estimated distance squared from the closest point on a bounding box to a point.
*
* @param {OrientedBoundingBox} box The box.
* @param {Cartesian3} cartesian The point
* @returns {Number} The estimated distance squared from the bounding sphere to the point.
*
* @example
* // Sort bounding boxes from back to front
* boxes.sort(function(a, b) {
* return Cesium.OrientedBoundingBox.distanceSquaredTo(b, camera.positionWC) - Cesium.OrientedBoundingBox.distanceSquaredTo(a, camera.positionWC);
* });
*/
OrientedBoundingBox.distanceSquaredTo = function(box, cartesian) {
// See Geometric Tools for Computer Graphics 10.4.2
//>>includeStart('debug', pragmas.debug);
if (!defined(box)) {
throw new DeveloperError('box is required.');
}
if (!defined(cartesian)) {
throw new DeveloperError('cartesian is required.');
}
//>>includeEnd('debug');
var offset = Cartesian3.subtract(cartesian, box.center, scratchOffset);
var halfAxes = box.halfAxes;
var u = Matrix3.getColumn(halfAxes, 0, scratchCartesianU);
var v = Matrix3.getColumn(halfAxes, 1, scratchCartesianV);
var w = Matrix3.getColumn(halfAxes, 2, scratchCartesianW);
var uHalf = Cartesian3.magnitude(u);
var vHalf = Cartesian3.magnitude(v);
var wHalf = Cartesian3.magnitude(w);
Cartesian3.normalize(u, u);
Cartesian3.normalize(v, v);
Cartesian3.normalize(w, w);
var pPrime = scratchPPrime;
pPrime.x = Cartesian3.dot(offset, u);
pPrime.y = Cartesian3.dot(offset, v);
pPrime.z = Cartesian3.dot(offset, w);
var distanceSquared = 0.0;
var d;
if (pPrime.x < -uHalf) {
d = pPrime.x + uHalf;
distanceSquared += d * d;
} else if (pPrime.x > uHalf) {
d = pPrime.x - uHalf;
distanceSquared += d * d;
}
if (pPrime.y < -vHalf) {
d = pPrime.y + vHalf;
distanceSquared += d * d;
} else if (pPrime.y > vHalf) {
d = pPrime.y - vHalf;
distanceSquared += d * d;
}
if (pPrime.z < -wHalf) {
d = pPrime.z + wHalf;
distanceSquared += d * d;
} else if (pPrime.z > wHalf) {
d = pPrime.z - wHalf;
distanceSquared += d * d;
}
return distanceSquared;
};
var scratchCorner = new Cartesian3();
var scratchToCenter = new Cartesian3();
/**
* The distances calculated by the vector from the center of the bounding box to position projected onto direction.
* <br>
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
* closest and farthest planes from position that intersect the bounding box.
*
* @param {OrientedBoundingBox} box The bounding box to calculate the distance to.
* @param {Cartesian3} position The position to calculate the distance from.
* @param {Cartesian3} direction The direction from position.
* @param {Interval} [result] A Interval to store the nearest and farthest distances.
* @returns {Interval} The nearest and farthest distances on the bounding box from position in direction.
*/
OrientedBoundingBox.computePlaneDistances = function(box, position, direction, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(box)) {
throw new DeveloperError('box is required.');
}
if (!defined(position)) {
throw new DeveloperError('position is required.');
}
if (!defined(direction)) {
throw new DeveloperError('direction is required.');
}
//>>includeEnd('debug');
if (!defined(result)) {
result = new Interval();
}
var minDist = Number.POSITIVE_INFINITY;
var maxDist = Number.NEGATIVE_INFINITY;
var center = box.center;
var halfAxes = box.halfAxes;
var u = Matrix3.getColumn(halfAxes, 0, scratchCartesianU);
var v = Matrix3.getColumn(halfAxes, 1, scratchCartesianV);
var w = Matrix3.getColumn(halfAxes, 2, scratchCartesianW);
// project first corner
var corner = Cartesian3.add(u, v, scratchCorner);
Cartesian3.add(corner, w, corner);
Cartesian3.add(corner, center, corner);
var toCenter = Cartesian3.subtract(corner, position, scratchToCenter);
var mag = Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project second corner
Cartesian3.add(center, u, corner);
Cartesian3.add(corner, v, corner);
Cartesian3.subtract(corner, w, corner);
Cartesian3.subtract(corner, position, toCenter);
mag = Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project third corner
Cartesian3.add(center, u, corner);
Cartesian3.subtract(corner, v, corner);
Cartesian3.add(corner, w, corner);
Cartesian3.subtract(corner, position, toCenter);
mag = Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project fourth corner
Cartesian3.add(center, u, corner);
Cartesian3.subtract(corner, v, corner);
Cartesian3.subtract(corner, w, corner);
Cartesian3.subtract(corner, position, toCenter);
mag = Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project fifth corner
Cartesian3.subtract(center, u, corner);
Cartesian3.add(corner, v, corner);
Cartesian3.add(corner, w, corner);
Cartesian3.subtract(corner, position, toCenter);
mag = Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project sixth corner
Cartesian3.subtract(center, u, corner);
Cartesian3.add(corner, v, corner);
Cartesian3.subtract(corner, w, corner);
Cartesian3.subtract(corner, position, toCenter);
mag = Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project seventh corner
Cartesian3.subtract(center, u, corner);
Cartesian3.subtract(corner, v, corner);
Cartesian3.add(corner, w, corner);
Cartesian3.subtract(corner, position, toCenter);
mag = Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
// project eighth corner
Cartesian3.subtract(center, u, corner);
Cartesian3.subtract(corner, v, corner);
Cartesian3.subtract(corner, w, corner);
Cartesian3.subtract(corner, position, toCenter);
mag = Cartesian3.dot(direction, toCenter);
minDist = Math.min(mag, minDist);
maxDist = Math.max(mag, maxDist);
result.start = minDist;
result.stop = maxDist;
return result;
};
var scratchBoundingSphere = new BoundingSphere();
/**
* Determines whether or not a bounding box is hidden from view by the occluder.
*
* @param {OrientedBoundingBox} box The bounding box surrounding the occludee object.
* @param {Occluder} occluder The occluder.
* @returns {Boolean} <code>true</code> if the box is not visible; otherwise <code>false</code>.
*/
OrientedBoundingBox.isOccluded = function(box, occluder) {
//>>includeStart('debug', pragmas.debug);
if (!defined(box)) {
throw new DeveloperError('box is required.');
}
if (!defined(occluder)) {
throw new DeveloperError('occluder is required.');
}
//>>includeEnd('debug');
var sphere = BoundingSphere.fromOrientedBoundingBox(box, scratchBoundingSphere);
return !occluder.isBoundingSphereVisible(sphere);
};
/**
* Determines which side of a plane the oriented bounding box is located.
*
* @param {Plane} plane The plane to test against.
* @returns {Intersect} {@link Intersect.INSIDE} if the entire box is on the side of the plane
* the normal is pointing, {@link Intersect.OUTSIDE} if the entire box is
* on the opposite side, and {@link Intersect.INTERSECTING} if the box
* intersects the plane.
*/
OrientedBoundingBox.prototype.intersectPlane = function(plane) {
return OrientedBoundingBox.intersectPlane(this, plane);
};
/**
* Computes the estimated distance squared from the closest point on a bounding box to a point.
*
* @param {Cartesian3} cartesian The point
* @returns {Number} The estimated distance squared from the bounding sphere to the point.
*
* @example
* // Sort bounding boxes from back to front
* boxes.sort(function(a, b) {
* return b.distanceSquaredTo(camera.positionWC) - a.distanceSquaredTo(camera.positionWC);
* });
*/
OrientedBoundingBox.prototype.distanceSquaredTo = function(cartesian) {
return OrientedBoundingBox.distanceSquaredTo(this, cartesian);
};
/**
* The distances calculated by the vector from the center of the bounding box to position projected onto direction.
* <br>
* If you imagine the infinite number of planes with normal direction, this computes the smallest distance to the
* closest and farthest planes from position that intersect the bounding box.
*
* @param {Cartesian3} position The position to calculate the distance from.
* @param {Cartesian3} direction The direction from position.
* @param {Interval} [result] A Interval to store the nearest and farthest distances.
* @returns {Interval} The nearest and farthest distances on the bounding box from position in direction.
*/
OrientedBoundingBox.prototype.computePlaneDistances = function(position, direction, result) {
return OrientedBoundingBox.computePlaneDistances(this, position, direction, result);
};
/**
* Determines whether or not a bounding box is hidden from view by the occluder.
*
* @param {Occluder} occluder The occluder.
* @returns {Boolean} <code>true</code> if the sphere is not visible; otherwise <code>false</code>.
*/
OrientedBoundingBox.prototype.isOccluded = function(occluder) {
return OrientedBoundingBox.isOccluded(this, occluder);
};
/**
* Compares the provided OrientedBoundingBox componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {OrientedBoundingBox} left The first OrientedBoundingBox.
* @param {OrientedBoundingBox} right The second OrientedBoundingBox.
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
*/
OrientedBoundingBox.equals = function(left, right) {
return (left === right) ||
((defined(left)) &&
(defined(right)) &&
Cartesian3.equals(left.center, right.center) &&
Matrix3.equals(left.halfAxes, right.halfAxes));
};
/**
* Duplicates this OrientedBoundingBox instance.
*
* @param {OrientedBoundingBox} [result] The object onto which to store the result.
* @returns {OrientedBoundingBox} The modified result parameter or a new OrientedBoundingBox instance if one was not provided.
*/
OrientedBoundingBox.prototype.clone = function(result) {
return OrientedBoundingBox.clone(this, result);
};
/**
* Compares this OrientedBoundingBox against the provided OrientedBoundingBox componentwise and returns
* <code>true</code> if they are equal, <code>false</code> otherwise.
*
* @param {OrientedBoundingBox} [right] The right hand side OrientedBoundingBox.
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
*/
OrientedBoundingBox.prototype.equals = function(right) {
return OrientedBoundingBox.equals(this, right);
};
return OrientedBoundingBox;
});