-
Notifications
You must be signed in to change notification settings - Fork 1
/
bpred.c
985 lines (878 loc) · 29.8 KB
/
bpred.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
/* bpred.c - branch predictor routines */
/* SimpleScalar(TM) Tool Suite
* Copyright (C) 1994-2001 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
* All Rights Reserved.
*
* THIS IS A LEGAL DOCUMENT, BY USING SIMPLESCALAR,
* YOU ARE AGREEING TO THESE TERMS AND CONDITIONS.
*
* No portion of this work may be used by any commercial entity, or for any
* commercial purpose, without the prior, written permission of SimpleScalar,
* LLC (info@simplescalar.com). Nonprofit and noncommercial use is permitted
* as described below.
*
* 1. SimpleScalar is provided AS IS, with no warranty of any kind, express
* or implied. The user of the program accepts full responsibility for the
* application of the program and the use of any results.
*
* 2. Nonprofit and noncommercial use is encouraged. SimpleScalar may be
* downloaded, compiled, executed, copied, and modified solely for nonprofit,
* educational, noncommercial research, and noncommercial scholarship
* purposes provided that this notice in its entirety accompanies all copies.
* Copies of the modified software can be delivered to persons who use it
* solely for nonprofit, educational, noncommercial research, and
* noncommercial scholarship purposes provided that this notice in its
* entirety accompanies all copies.
*
* 3. ALL COMMERCIAL USE, AND ALL USE BY FOR PROFIT ENTITIES, IS EXPRESSLY
* PROHIBITED WITHOUT A LICENSE FROM SIMPLESCALAR, LLC (info@simplescalar.com).
*
* 4. No nonprofit user may place any restrictions on the use of this software,
* including as modified by the user, by any other authorized user.
*
* 5. Noncommercial and nonprofit users may distribute copies of SimpleScalar
* in compiled or executable form as set forth in Section 2, provided that
* either: (A) it is accompanied by the corresponding machine-readable source
* code, or (B) it is accompanied by a written offer, with no time limit, to
* give anyone a machine-readable copy of the corresponding source code in
* return for reimbursement of the cost of distribution. This written offer
* must permit verbatim duplication by anyone, or (C) it is distributed by
* someone who received only the executable form, and is accompanied by a
* copy of the written offer of source code.
*
* 6. SimpleScalar was developed by Todd M. Austin, Ph.D. The tool suite is
* currently maintained by SimpleScalar LLC (info@simplescalar.com). US Mail:
* 2395 Timbercrest Court, Ann Arbor, MI 48105.
*
* Copyright (C) 2000-2001 by The Regents of The University of Michigan.
* Copyright (C) 1994-2001 by Todd M. Austin, Ph.D. and SimpleScalar, LLC.
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include "host.h"
#include "misc.h"
#include "machine.h"
#include "bpred.h"
/* turn this on to enable the SimpleScalar 2.0 RAS bug */
/* #define RAS_BUG_COMPATIBLE */
/* create a branch predictor */
struct bpred_t * /* branch predictory instance */
bpred_create(enum bpred_class class, /* type of predictor to create */
unsigned int bimod_size, /* bimod table size */
unsigned int l1size, /* 2lev l1 table size */
unsigned int l2size, /* 2lev l2 table size */
unsigned int meta_size, /* meta table size */
unsigned int shift_width, /* history register width */
unsigned int xor, /* history xor address flag */
unsigned int btb_sets, /* number of sets in BTB */
unsigned int btb_assoc, /* BTB associativity */
unsigned int retstack_size) /* num entries in ret-addr stack */
{
struct bpred_t *pred;
if (!(pred = calloc(1, sizeof(struct bpred_t))))
fatal("out of virtual memory");
pred->class = class;
switch (class) {
case BPredComb:
/* bimodal component */
pred->dirpred.bimod =
bpred_dir_create(BPred2bit, bimod_size, 0, 0, 0);
/* 2-level component */
pred->dirpred.twolev =
bpred_dir_create(BPred2Level, l1size, l2size, shift_width, xor);
/* metapredictor component */
pred->dirpred.meta =
bpred_dir_create(BPred2bit, meta_size, 0, 0, 0);
break;
case BPred2Level:
pred->dirpred.twolev =
bpred_dir_create(class, l1size, l2size, shift_width, xor);
break;
case BPred2bit:
pred->dirpred.bimod =
bpred_dir_create(class, bimod_size, 0, 0, 0);
case BPredTaken:
case BPredNotTaken:
/* no other state */
break;
default:
panic("bogus predictor class");
}
/* allocate ret-addr stack */
switch (class) {
case BPredComb:
case BPred2Level:
case BPred2bit:
{
int i;
/* allocate BTB */
if (!btb_sets || (btb_sets & (btb_sets-1)) != 0)
fatal("number of BTB sets must be non-zero and a power of two");
if (!btb_assoc || (btb_assoc & (btb_assoc-1)) != 0)
fatal("BTB associativity must be non-zero and a power of two");
if (!(pred->btb.btb_data = calloc(btb_sets * btb_assoc,
sizeof(struct bpred_btb_ent_t))))
fatal("cannot allocate BTB");
pred->btb.sets = btb_sets;
pred->btb.assoc = btb_assoc;
if (pred->btb.assoc > 1)
for (i=0; i < (pred->btb.assoc*pred->btb.sets); i++)
{
if (i % pred->btb.assoc != pred->btb.assoc - 1)
pred->btb.btb_data[i].next = &pred->btb.btb_data[i+1];
else
pred->btb.btb_data[i].next = NULL;
if (i % pred->btb.assoc != pred->btb.assoc - 1)
pred->btb.btb_data[i+1].prev = &pred->btb.btb_data[i];
}
/* allocate retstack */
if ((retstack_size & (retstack_size-1)) != 0)
fatal("Return-address-stack size must be zero or a power of two");
pred->retstack.size = retstack_size;
if (retstack_size)
if (!(pred->retstack.stack = calloc(retstack_size,
sizeof(struct bpred_btb_ent_t))))
fatal("cannot allocate return-address-stack");
pred->retstack.tos = retstack_size - 1;
break;
}
case BPredTaken:
case BPredNotTaken:
/* no other state */
break;
default:
panic("bogus predictor class");
}
return pred;
}
/* create a branch direction predictor */
struct bpred_dir_t * /* branch direction predictor instance */
bpred_dir_create (
enum bpred_class class, /* type of predictor to create */
unsigned int l1size, /* level-1 table size */
unsigned int l2size, /* level-2 table size (if relevant) */
unsigned int shift_width, /* history register width */
unsigned int xor) /* history xor address flag */
{
struct bpred_dir_t *pred_dir;
unsigned int cnt;
int flipflop;
if (!(pred_dir = calloc(1, sizeof(struct bpred_dir_t))))
fatal("out of virtual memory");
pred_dir->class = class;
cnt = -1;
switch (class) {
case BPred2Level:
{
if (!l1size || (l1size & (l1size-1)) != 0)
fatal("level-1 size, `%d', must be non-zero and a power of two",
l1size);
pred_dir->config.two.l1size = l1size;
if (!l2size || (l2size & (l2size-1)) != 0)
fatal("level-2 size, `%d', must be non-zero and a power of two",
l2size);
pred_dir->config.two.l2size = l2size;
if (!shift_width || shift_width > 30)
fatal("shift register width, `%d', must be non-zero and positive",
shift_width);
pred_dir->config.two.shift_width = shift_width;
pred_dir->config.two.xor = xor;
pred_dir->config.two.shiftregs = calloc(l1size, sizeof(int));
if (!pred_dir->config.two.shiftregs)
fatal("cannot allocate shift register table");
pred_dir->config.two.l2table = calloc(l2size, sizeof(unsigned char));
if (!pred_dir->config.two.l2table)
fatal("cannot allocate second level table");
/* initialize counters to weakly this-or-that */
flipflop = 1;
for (cnt = 0; cnt < l2size; cnt++)
{
pred_dir->config.two.l2table[cnt] = flipflop;
flipflop = 3 - flipflop;
}
break;
}
case BPred2bit:
if (!l1size || (l1size & (l1size-1)) != 0)
fatal("2bit table size, `%d', must be non-zero and a power of two",
l1size);
pred_dir->config.bimod.size = l1size;
if (!(pred_dir->config.bimod.table =
calloc(l1size, sizeof(unsigned char))))
fatal("cannot allocate 2bit storage");
/* initialize counters to weakly this-or-that */
flipflop = 1;
for (cnt = 0; cnt < l1size; cnt++)
{
pred_dir->config.bimod.table[cnt] = flipflop;
flipflop = 3 - flipflop;
}
break;
case BPredTaken:
case BPredNotTaken:
/* no other state */
break;
default:
panic("bogus branch direction predictor class");
}
return pred_dir;
}
/* print branch direction predictor configuration */
void
bpred_dir_config(
struct bpred_dir_t *pred_dir, /* branch direction predictor instance */
char name[], /* predictor name */
FILE *stream) /* output stream */
{
switch (pred_dir->class) {
case BPred2Level:
fprintf(stream,
"pred_dir: %s: 2-lvl: %d l1-sz, %d bits/ent, %s xor, %d l2-sz, direct-mapped\n",
name, pred_dir->config.two.l1size, pred_dir->config.two.shift_width,
pred_dir->config.two.xor ? "" : "no", pred_dir->config.two.l2size);
break;
case BPred2bit:
fprintf(stream, "pred_dir: %s: 2-bit: %d entries, direct-mapped\n",
name, pred_dir->config.bimod.size);
break;
case BPredTaken:
fprintf(stream, "pred_dir: %s: predict taken\n", name);
break;
case BPredNotTaken:
fprintf(stream, "pred_dir: %s: predict not taken\n", name);
break;
default:
panic("bogus branch direction predictor class");
}
}
/* print branch predictor configuration */
void
bpred_config(struct bpred_t *pred, /* branch predictor instance */
FILE *stream) /* output stream */
{
switch (pred->class) {
case BPredComb:
bpred_dir_config (pred->dirpred.bimod, "bimod", stream);
bpred_dir_config (pred->dirpred.twolev, "2lev", stream);
bpred_dir_config (pred->dirpred.meta, "meta", stream);
fprintf(stream, "btb: %d sets x %d associativity",
pred->btb.sets, pred->btb.assoc);
fprintf(stream, "ret_stack: %d entries", pred->retstack.size);
break;
case BPred2Level:
bpred_dir_config (pred->dirpred.twolev, "2lev", stream);
fprintf(stream, "btb: %d sets x %d associativity",
pred->btb.sets, pred->btb.assoc);
fprintf(stream, "ret_stack: %d entries", pred->retstack.size);
break;
case BPred2bit:
bpred_dir_config (pred->dirpred.bimod, "bimod", stream);
fprintf(stream, "btb: %d sets x %d associativity",
pred->btb.sets, pred->btb.assoc);
fprintf(stream, "ret_stack: %d entries", pred->retstack.size);
break;
case BPredTaken:
bpred_dir_config (pred->dirpred.bimod, "taken", stream);
break;
case BPredNotTaken:
bpred_dir_config (pred->dirpred.bimod, "nottaken", stream);
break;
default:
panic("bogus branch predictor class");
}
}
/* print predictor stats */
void
bpred_stats(struct bpred_t *pred, /* branch predictor instance */
FILE *stream) /* output stream */
{
fprintf(stream, "pred: addr-prediction rate = %f\n",
(double)pred->addr_hits/(double)(pred->addr_hits+pred->misses));
fprintf(stream, "pred: dir-prediction rate = %f\n",
(double)pred->dir_hits/(double)(pred->dir_hits+pred->misses));
}
/* register branch predictor stats */
void
bpred_reg_stats(struct bpred_t *pred, /* branch predictor instance */
struct stat_sdb_t *sdb) /* stats database */
{
char buf[512], buf1[512], *name;
/* get a name for this predictor */
switch (pred->class)
{
case BPredComb:
name = "bpred_comb";
break;
case BPred2Level:
name = "bpred_2lev";
break;
case BPred2bit:
name = "bpred_bimod";
break;
case BPredTaken:
name = "bpred_taken";
break;
case BPredNotTaken:
name = "bpred_nottaken";
break;
default:
panic("bogus branch predictor class");
}
sprintf(buf, "%s.lookups", name);
stat_reg_counter(sdb, buf, "total number of bpred lookups",
&pred->lookups, 0, NULL);
sprintf(buf, "%s.updates", name);
sprintf(buf1, "%s.dir_hits + %s.misses", name, name);
stat_reg_formula(sdb, buf, "total number of updates", buf1, "%12.0f");
sprintf(buf, "%s.addr_hits", name);
stat_reg_counter(sdb, buf, "total number of address-predicted hits",
&pred->addr_hits, 0, NULL);
sprintf(buf, "%s.dir_hits", name);
stat_reg_counter(sdb, buf,
"total number of direction-predicted hits "
"(includes addr-hits)",
&pred->dir_hits, 0, NULL);
if (pred->class == BPredComb)
{
sprintf(buf, "%s.used_bimod", name);
stat_reg_counter(sdb, buf,
"total number of bimodal predictions used",
&pred->used_bimod, 0, NULL);
sprintf(buf, "%s.used_2lev", name);
stat_reg_counter(sdb, buf,
"total number of 2-level predictions used",
&pred->used_2lev, 0, NULL);
}
sprintf(buf, "%s.misses", name);
stat_reg_counter(sdb, buf, "total number of misses", &pred->misses, 0, NULL);
sprintf(buf, "%s.jr_hits", name);
stat_reg_counter(sdb, buf,
"total number of address-predicted hits for JR's",
&pred->jr_hits, 0, NULL);
sprintf(buf, "%s.jr_seen", name);
stat_reg_counter(sdb, buf,
"total number of JR's seen",
&pred->jr_seen, 0, NULL);
sprintf(buf, "%s.jr_non_ras_hits.PP", name);
stat_reg_counter(sdb, buf,
"total number of address-predicted hits for non-RAS JR's",
&pred->jr_non_ras_hits, 0, NULL);
sprintf(buf, "%s.jr_non_ras_seen.PP", name);
stat_reg_counter(sdb, buf,
"total number of non-RAS JR's seen",
&pred->jr_non_ras_seen, 0, NULL);
sprintf(buf, "%s.bpred_addr_rate", name);
sprintf(buf1, "%s.addr_hits / %s.updates", name, name);
stat_reg_formula(sdb, buf,
"branch address-prediction rate (i.e., addr-hits/updates)",
buf1, "%9.4f");
sprintf(buf, "%s.bpred_dir_rate", name);
sprintf(buf1, "%s.dir_hits / %s.updates", name, name);
stat_reg_formula(sdb, buf,
"branch direction-prediction rate (i.e., all-hits/updates)",
buf1, "%9.4f");
sprintf(buf, "%s.bpred_jr_rate", name);
sprintf(buf1, "%s.jr_hits / %s.jr_seen", name, name);
stat_reg_formula(sdb, buf,
"JR address-prediction rate (i.e., JR addr-hits/JRs seen)",
buf1, "%9.4f");
sprintf(buf, "%s.bpred_jr_non_ras_rate.PP", name);
sprintf(buf1, "%s.jr_non_ras_hits.PP / %s.jr_non_ras_seen.PP", name, name);
stat_reg_formula(sdb, buf,
"non-RAS JR addr-pred rate (ie, non-RAS JR hits/JRs seen)",
buf1, "%9.4f");
sprintf(buf, "%s.retstack_pushes", name);
stat_reg_counter(sdb, buf,
"total number of address pushed onto ret-addr stack",
&pred->retstack_pushes, 0, NULL);
sprintf(buf, "%s.retstack_pops", name);
stat_reg_counter(sdb, buf,
"total number of address popped off of ret-addr stack",
&pred->retstack_pops, 0, NULL);
sprintf(buf, "%s.used_ras.PP", name);
stat_reg_counter(sdb, buf,
"total number of RAS predictions used",
&pred->used_ras, 0, NULL);
sprintf(buf, "%s.ras_hits.PP", name);
stat_reg_counter(sdb, buf,
"total number of RAS hits",
&pred->ras_hits, 0, NULL);
sprintf(buf, "%s.ras_rate.PP", name);
sprintf(buf1, "%s.ras_hits.PP / %s.used_ras.PP", name, name);
stat_reg_formula(sdb, buf,
"RAS prediction rate (i.e., RAS hits/used RAS)",
buf1, "%9.4f");
}
void
bpred_after_priming(struct bpred_t *bpred)
{
if (bpred == NULL)
return;
bpred->lookups = 0;
bpred->addr_hits = 0;
bpred->dir_hits = 0;
bpred->used_ras = 0;
bpred->used_bimod = 0;
bpred->used_2lev = 0;
bpred->jr_hits = 0;
bpred->jr_seen = 0;
bpred->misses = 0;
bpred->retstack_pops = 0;
bpred->retstack_pushes = 0;
bpred->ras_hits = 0;
}
#define BIMOD_HASH(PRED, ADDR) \
((((ADDR) >> 19) ^ ((ADDR) >> MD_BR_SHIFT)) & ((PRED)->config.bimod.size-1))
/* was: ((baddr >> 16) ^ baddr) & (pred->dirpred.bimod.size-1) */
/* predicts a branch direction */
char * /* pointer to counter */
bpred_dir_lookup(struct bpred_dir_t *pred_dir, /* branch dir predictor inst */
md_addr_t baddr) /* branch address */
{
unsigned char *p = NULL;
/* Except for jumps, get a pointer to direction-prediction bits */
switch (pred_dir->class) {
case BPred2Level:
{
int l1index, l2index;
/* traverse 2-level tables */
l1index = (baddr >> MD_BR_SHIFT) & (pred_dir->config.two.l1size - 1);
l2index = pred_dir->config.two.shiftregs[l1index];
if (pred_dir->config.two.xor)
{
#if 1
/* this L2 index computation is more "compatible" to McFarling's
verison of it, i.e., if the PC xor address component is only
part of the index, take the lower order address bits for the
other part of the index, rather than the higher order ones */
l2index = (((l2index ^ (baddr >> MD_BR_SHIFT))
& ((1 << pred_dir->config.two.shift_width) - 1))
| ((baddr >> MD_BR_SHIFT)
<< pred_dir->config.two.shift_width));
#else
l2index = l2index ^ (baddr >> MD_BR_SHIFT);
#endif
}
else
{
l2index =
l2index
| ((baddr >> MD_BR_SHIFT) << pred_dir->config.two.shift_width);
}
l2index = l2index & (pred_dir->config.two.l2size - 1);
/* get a pointer to prediction state information */
p = &pred_dir->config.two.l2table[l2index];
}
break;
case BPred2bit:
p = &pred_dir->config.bimod.table[BIMOD_HASH(pred_dir, baddr)];
break;
case BPredTaken:
case BPredNotTaken:
break;
default:
panic("bogus branch direction predictor class");
}
return (char *)p;
}
/* probe a predictor for a next fetch address, the predictor is probed
with branch address BADDR, the branch target is BTARGET (used for
static predictors), and OP is the instruction opcode (used to simulate
predecode bits; a pointer to the predictor state entry (or null for jumps)
is returned in *DIR_UPDATE_PTR (used for updating predictor state),
and the non-speculative top-of-stack is returned in stack_recover_idx
(used for recovering ret-addr stack after mis-predict). */
md_addr_t /* predicted branch target addr */
bpred_lookup(struct bpred_t *pred, /* branch predictor instance */
md_addr_t baddr, /* branch address */
md_addr_t btarget, /* branch target if taken */
enum md_opcode op, /* opcode of instruction */
int is_call, /* non-zero if inst is fn call */
int is_return, /* non-zero if inst is fn return */
struct bpred_update_t *dir_update_ptr, /* pred state pointer */
int *stack_recover_idx) /* Non-speculative top-of-stack;
* used on mispredict recovery */
{
struct bpred_btb_ent_t *pbtb = NULL;
int index, i;
if (!dir_update_ptr)
panic("no bpred update record");
/* if this is not a branch, return not-taken */
if (!(MD_OP_FLAGS(op) & F_CTRL))
return 0;
pred->lookups++;
dir_update_ptr->dir.ras = FALSE;
dir_update_ptr->pdir1 = NULL;
dir_update_ptr->pdir2 = NULL;
dir_update_ptr->pmeta = NULL;
/* Except for jumps, get a pointer to direction-prediction bits */
switch (pred->class) {
case BPredComb:
if ((MD_OP_FLAGS(op) & (F_CTRL|F_UNCOND)) != (F_CTRL|F_UNCOND))
{
char *bimod, *twolev, *meta;
bimod = bpred_dir_lookup (pred->dirpred.bimod, baddr);
twolev = bpred_dir_lookup (pred->dirpred.twolev, baddr);
meta = bpred_dir_lookup (pred->dirpred.meta, baddr);
dir_update_ptr->pmeta = meta;
dir_update_ptr->dir.meta = (*meta >= 2);
dir_update_ptr->dir.bimod = (*bimod >= 2);
dir_update_ptr->dir.twolev = (*twolev >= 2);
if (*meta >= 2)
{
dir_update_ptr->pdir1 = twolev;
dir_update_ptr->pdir2 = bimod;
}
else
{
dir_update_ptr->pdir1 = bimod;
dir_update_ptr->pdir2 = twolev;
}
}
break;
case BPred2Level:
if ((MD_OP_FLAGS(op) & (F_CTRL|F_UNCOND)) != (F_CTRL|F_UNCOND))
{
dir_update_ptr->pdir1 =
bpred_dir_lookup (pred->dirpred.twolev, baddr);
}
break;
case BPred2bit:
if ((MD_OP_FLAGS(op) & (F_CTRL|F_UNCOND)) != (F_CTRL|F_UNCOND))
{
dir_update_ptr->pdir1 =
bpred_dir_lookup (pred->dirpred.bimod, baddr);
}
break;
case BPredTaken:
return btarget;
case BPredNotTaken:
if ((MD_OP_FLAGS(op) & (F_CTRL|F_UNCOND)) != (F_CTRL|F_UNCOND))
{
return baddr + sizeof(md_inst_t);
}
else
{
return btarget;
}
default:
panic("bogus predictor class");
}
/*
* We have a stateful predictor, and have gotten a pointer into the
* direction predictor (except for jumps, for which the ptr is null)
*/
/* record pre-pop TOS; if this branch is executed speculatively
* and is squashed, we'll restore the TOS and hope the data
* wasn't corrupted in the meantime. */
if (pred->retstack.size)
*stack_recover_idx = pred->retstack.tos;
else
*stack_recover_idx = 0;
/* if this is a return, pop return-address stack */
if (is_return && pred->retstack.size)
{
md_addr_t target = pred->retstack.stack[pred->retstack.tos].target;
pred->retstack.tos = (pred->retstack.tos + pred->retstack.size - 1)
% pred->retstack.size;
pred->retstack_pops++;
dir_update_ptr->dir.ras = TRUE; /* using RAS here */
return target;
}
#ifndef RAS_BUG_COMPATIBLE
/* if function call, push return-address onto return-address stack */
if (is_call && pred->retstack.size)
{
pred->retstack.tos = (pred->retstack.tos + 1)% pred->retstack.size;
pred->retstack.stack[pred->retstack.tos].target =
baddr + sizeof(md_inst_t);
pred->retstack_pushes++;
}
#endif /* !RAS_BUG_COMPATIBLE */
/* not a return. Get a pointer into the BTB */
index = (baddr >> MD_BR_SHIFT) & (pred->btb.sets - 1);
if (pred->btb.assoc > 1)
{
index *= pred->btb.assoc;
/* Now we know the set; look for a PC match */
for (i = index; i < (index+pred->btb.assoc) ; i++)
if (pred->btb.btb_data[i].addr == baddr)
{
/* match */
pbtb = &pred->btb.btb_data[i];
break;
}
}
else
{
pbtb = &pred->btb.btb_data[index];
if (pbtb->addr != baddr)
pbtb = NULL;
}
/*
* We now also have a pointer into the BTB for a hit, or NULL otherwise
*/
/* if this is a jump, ignore predicted direction; we know it's taken. */
if ((MD_OP_FLAGS(op) & (F_CTRL|F_UNCOND)) == (F_CTRL|F_UNCOND))
{
return (pbtb ? pbtb->target : 1);
}
/* otherwise we have a conditional branch */
if (pbtb == NULL)
{
/* BTB miss -- just return a predicted direction */
return ((*(dir_update_ptr->pdir1) >= 2)
? /* taken */ 1
: /* not taken */ 0);
}
else
{
/* BTB hit, so return target if it's a predicted-taken branch */
return ((*(dir_update_ptr->pdir1) >= 2)
? /* taken */ pbtb->target
: /* not taken */ 0);
}
}
/* Speculative execution can corrupt the ret-addr stack. So for each
* lookup we return the top-of-stack (TOS) at that point; a mispredicted
* branch, as part of its recovery, restores the TOS using this value --
* hopefully this uncorrupts the stack. */
void
bpred_recover(struct bpred_t *pred, /* branch predictor instance */
md_addr_t baddr, /* branch address */
int stack_recover_idx) /* Non-speculative top-of-stack;
* used on mispredict recovery */
{
if (pred == NULL)
return;
pred->retstack.tos = stack_recover_idx;
}
/* update the branch predictor, only useful for stateful predictors; updates
entry for instruction type OP at address BADDR. BTB only gets updated
for branches which are taken. Inst was determined to jump to
address BTARGET and was taken if TAKEN is non-zero. Predictor
statistics are updated with result of prediction, indicated by CORRECT and
PRED_TAKEN, predictor state to be updated is indicated by *DIR_UPDATE_PTR
(may be NULL for jumps, which shouldn't modify state bits). Note if
bpred_update is done speculatively, branch-prediction may get polluted. */
void
bpred_update(struct bpred_t *pred, /* branch predictor instance */
md_addr_t baddr, /* branch address */
md_addr_t btarget, /* resolved branch target */
int taken, /* non-zero if branch was taken */
int pred_taken, /* non-zero if branch was pred taken */
int correct, /* was earlier addr prediction ok? */
enum md_opcode op, /* opcode of instruction */
struct bpred_update_t *dir_update_ptr)/* pred state pointer */
{
struct bpred_btb_ent_t *pbtb = NULL;
struct bpred_btb_ent_t *lruhead = NULL, *lruitem = NULL;
int index, i;
/* don't change bpred state for non-branch instructions or if this
* is a stateless predictor*/
if (!(MD_OP_FLAGS(op) & F_CTRL))
return;
/* Have a branch here */
if (correct)
pred->addr_hits++;
if (!!pred_taken == !!taken)
pred->dir_hits++;
else
pred->misses++;
if (dir_update_ptr->dir.ras)
{
pred->used_ras++;
if (correct)
pred->ras_hits++;
}
else if ((MD_OP_FLAGS(op) & (F_CTRL|F_COND)) == (F_CTRL|F_COND))
{
if (dir_update_ptr->dir.meta)
pred->used_2lev++;
else
pred->used_bimod++;
}
/* keep stats about JR's; also, but don't change any bpred state for JR's
* which are returns unless there's no retstack */
if (MD_IS_INDIR(op))
{
pred->jr_seen++;
if (correct)
pred->jr_hits++;
if (!dir_update_ptr->dir.ras)
{
pred->jr_non_ras_seen++;
if (correct)
pred->jr_non_ras_hits++;
}
else
{
/* return that used the ret-addr stack; no further work to do */
return;
}
}
/* Can exit now if this is a stateless predictor */
if (pred->class == BPredNotTaken || pred->class == BPredTaken)
return;
/*
* Now we know the branch didn't use the ret-addr stack, and that this
* is a stateful predictor
*/
#ifdef RAS_BUG_COMPATIBLE
/* if function call, push return-address onto return-address stack */
if (MD_IS_CALL(op) && pred->retstack.size)
{
pred->retstack.tos = (pred->retstack.tos + 1)% pred->retstack.size;
pred->retstack.stack[pred->retstack.tos].target =
baddr + sizeof(md_inst_t);
pred->retstack_pushes++;
}
#endif /* RAS_BUG_COMPATIBLE */
/* update L1 table if appropriate */
/* L1 table is updated unconditionally for combining predictor too */
if ((MD_OP_FLAGS(op) & (F_CTRL|F_UNCOND)) != (F_CTRL|F_UNCOND) &&
(pred->class == BPred2Level || pred->class == BPredComb))
{
int l1index, shift_reg;
/* also update appropriate L1 history register */
l1index =
(baddr >> MD_BR_SHIFT) & (pred->dirpred.twolev->config.two.l1size - 1);
shift_reg =
(pred->dirpred.twolev->config.two.shiftregs[l1index] << 1) | (!!taken);
pred->dirpred.twolev->config.two.shiftregs[l1index] =
shift_reg & ((1 << pred->dirpred.twolev->config.two.shift_width) - 1);
}
/* find BTB entry if it's a taken branch (don't allocate for non-taken) */
if (taken)
{
index = (baddr >> MD_BR_SHIFT) & (pred->btb.sets - 1);
if (pred->btb.assoc > 1)
{
index *= pred->btb.assoc;
/* Now we know the set; look for a PC match; also identify
* MRU and LRU items */
for (i = index; i < (index+pred->btb.assoc) ; i++)
{
if (pred->btb.btb_data[i].addr == baddr)
{
/* match */
assert(!pbtb);
pbtb = &pred->btb.btb_data[i];
}
dassert(pred->btb.btb_data[i].prev
!= pred->btb.btb_data[i].next);
if (pred->btb.btb_data[i].prev == NULL)
{
/* this is the head of the lru list, ie current MRU item */
dassert(lruhead == NULL);
lruhead = &pred->btb.btb_data[i];
}
if (pred->btb.btb_data[i].next == NULL)
{
/* this is the tail of the lru list, ie the LRU item */
dassert(lruitem == NULL);
lruitem = &pred->btb.btb_data[i];
}
}
dassert(lruhead && lruitem);
if (!pbtb)
/* missed in BTB; choose the LRU item in this set as the victim */
pbtb = lruitem;
/* else hit, and pbtb points to matching BTB entry */
/* Update LRU state: selected item, whether selected because it
* matched or because it was LRU and selected as a victim, becomes
* MRU */
if (pbtb != lruhead)
{
/* this splices out the matched entry... */
if (pbtb->prev)
pbtb->prev->next = pbtb->next;
if (pbtb->next)
pbtb->next->prev = pbtb->prev;
/* ...and this puts the matched entry at the head of the list */
pbtb->next = lruhead;
pbtb->prev = NULL;
lruhead->prev = pbtb;
dassert(pbtb->prev || pbtb->next);
dassert(pbtb->prev != pbtb->next);
}
/* else pbtb is already MRU item; do nothing */
}
else
pbtb = &pred->btb.btb_data[index];
}
/*
* Now 'p' is a possibly null pointer into the direction prediction table,
* and 'pbtb' is a possibly null pointer into the BTB (either to a
* matched-on entry or a victim which was LRU in its set)
*/
/* update state (but not for jumps) */
if (dir_update_ptr->pdir1)
{
if (taken)
{
if (*dir_update_ptr->pdir1 < 3)
++*dir_update_ptr->pdir1;
}
else
{ /* not taken */
if (*dir_update_ptr->pdir1 > 0)
--*dir_update_ptr->pdir1;
}
}
/* combining predictor also updates second predictor and meta predictor */
/* second direction predictor */
if (dir_update_ptr->pdir2)
{
if (taken)
{
if (*dir_update_ptr->pdir2 < 3)
++*dir_update_ptr->pdir2;
}
else
{ /* not taken */
if (*dir_update_ptr->pdir2 > 0)
--*dir_update_ptr->pdir2;
}
}
/* meta predictor */
if (dir_update_ptr->pmeta)
{
if (dir_update_ptr->dir.bimod != dir_update_ptr->dir.twolev)
{
/* we only update meta predictor if directions were different */
if (dir_update_ptr->dir.twolev == (unsigned int)taken)
{
/* 2-level predictor was correct */
if (*dir_update_ptr->pmeta < 3)
++*dir_update_ptr->pmeta;
}
else
{
/* bimodal predictor was correct */
if (*dir_update_ptr->pmeta > 0)
--*dir_update_ptr->pmeta;
}
}
}
/* update BTB (but only for taken branches) */
if (pbtb)
{
/* update current information */
dassert(taken);
if (pbtb->addr == baddr)
{
if (!correct)
pbtb->target = btarget;
}
else
{
/* enter a new branch in the table */
pbtb->addr = baddr;
pbtb->op = op;
pbtb->target = btarget;
}
}
}