Skip to content

Latest commit

 

History

History
334 lines (262 loc) · 7.91 KB

File metadata and controls

334 lines (262 loc) · 7.91 KB

Facial-Recognition-and-Emotion-Recognition-project

Development of question generation and mock interview function based on model learning and self-introduction to recognize and classify facial emotions

Team Members

Development environment settings

Device - GPU : NVIDIA A100 80GB (x 4)
CUDA Version : 12.2
Storage : 2.0T

  • requirements.txt
$ pip install -r requirements.txt
  • mathai.yaml
$ conda env create -f mathai.yaml
$ conda activate mathai

Modularization of each model

  • config : Hyperparameter values required for each file
  • dataset : It's made into a transformed image folder format dataset
  • model : Each classification model
  • train : Train for each model
  • plot : Plot the accuracy, loss, and confusion matrix of the model
  • main : where implementation is carried out comprehensively

Origin Data tree

📦data
 ┣ 📂anger
 ┃ ┣ 📂labeled
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┃ ┗ 📂raw
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┣ 📂anxiety
 ┃ ┣ 📂labeled
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┃ ┗ 📂raw
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┣ 📂embarrass
 ┃ ┣ 📂labeled
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┃ ┗ 📂raw
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┣ 📂happy
 ┃ ┣ 📂labeled
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┃ ┗ 📂raw
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┣ 📂normal
 ┃ ┣ 📂labeled
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┃ ┗ 📂raw
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┣ 📂pain
 ┃ ┣ 📂labeled
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┃ ┗ 📂raw
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┗ 📂sad
 ┃ ┣ 📂labeled
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation
 ┃ ┗ 📂raw
 ┃ ┃ ┣ 📂train
 ┃ ┃ ┗ 📂validation

Preprocessing

1. Truncated File Detection

Truncated image

***truncated image file sample***
  • train : embarrass(#1), normal(#3)
  • validation : anger(#2), embarrass(#1), happy(#4), pain(#1)
  • Excluding a total of 12 image files

2. Split Dataset

non_crop non_crop non_crop crop crop
train 1400 7000 28000 1400 7000
validation 700 2100 7000 700 2100

3. Create data path and labels for Yolov8

📦data
┣ 📂train
┃  ┣ 📂images
┃  ┗ 📂labels
┣ 📂validation 
┃  ┣ 📂images
┃  ┗ 📂labels
┗ 📂test
   ┗ 📂images

Part1 Categorizing a person's feelings

Used model

VGG

$ ~/model/vgg/$ python main.py

ResNet

$ ~/model/vgg/$ python main.py 

ResNeXt

$ ~/model/vgg/$ python main.py 

ViT

$ ~/model/vgg/$ python main.py 

Yolov8 - cls

from ultralytics import YOLO

model = YOLO('yolov8n-cls.pt')  # load a pretrained YOLOv8n cldssification model
model.train(data='image_folder_path')

Yolov8 - detection

from ultralytics import YOLO

model = YOLO('yolov8m.pt')  # load a pretrained YOLOv8n cldssification model
model.train(data='yaml_file_path')

Classification result

What is the best model?

  • Yolov8-cls
Model loss acc
VGG 1.4069 0.4864
ResNet 1.6695 0.3563
ResNeXt 1.5422 0.4163
ViT 1.7797 0.3006
Yolov8-cls 0.8322 0.6360

Part2 나만의 One and Only 면접 코디 (with. 감정분류)

Simulation of interviews using AI

  • Cold job market
  • Alone person
  • Without time and place constraints
  • Create Customized Questions

UI

  • Streamlit

Facial Detection

Yolov8 - detection

  • Live analysis of interviews
emotion anger anxiety embarrass happy normal pain sad
Type Negative Negative Negative Positive Positive Negative Negative

How did you score your emotions?

def emotion_score(score:50.0,emotion):
  '''
  Functions that give scores for each emotion

  agrs - score : float=50.0
       - emotion : list
  '''
  score = score
  good, bad = 0, 0
  threshold = 0.1 # initial threshold

  good += (threshold * (emotion.count('happy')) + threshold * (emotion.count('normal')))
  bad -=  (threshold * (emotion.count('anger')) + threshold * (emotion.count('embarrass')) + threshold * (emotion.count('anxiety')) + threshold * (emotion.count('pain')) + threshold * (emotion.count('sad')))
  print(emotion)

  # initial score range
  if score+good+bad > 70:
      print('good')
  elif score+good+bad > 40:
      print('normal')
  else:
      print('bad')

  print(score+good+bad)
  return score+good+bad

Live Emotion Detection

Live anaylsis

Create Question

GPT-3.5

  • Pretrained model

GPT3.5

Prompts that match our needs

SYSTEM_ANSWER_PROMPT = """You are an expert on generating 3 interview questions in Korean based on the provided 자기소개서 (self-introduction), a helpful bot who provides polished and professional questions which are commonly asked interview questions.
Your task is to understand the self-introduction provided by the user and then enhance the interview questions.
Also don't use heavy or complex words that are not typically used in human conversations.
"""

Self-Introduction based questions

Live anaylsis

Speech to Text & Evaluation Answer

GPT-3.5

OpenAI-Whisper

Live anaylsis

Answers to Questions


Live anaylsis

Utilization

You can combine part2's Simulation of interviews with ESTsoft's AI Human

Live anaylsis
sources ESTsoft

Creating AI Interviewers Using AI Human




Live anaylsis

Interviewer : Create questions based on letter of self-introduction



Live anaylsis
sources Freepik

Candidate : Practice listening to questions and telling answers

Result

confusion_matrix

Model accuracy precision recall f1_score time(h)
VGG 0.4864 0.420 0.414 0.417 26
ResNet 0.3563 0.28 0.298 0.289 27.2
ResNeXt 0.4163 0.202 0.201 0.201 18.2
ViT 0.3062 0.307 0.308 0.307 14.6
Yolov8m-cls 0.69 0.63 0.62 0.625 approx 3
Yolov8m 0.5725 0.68 0.74 0.709 approx 3

Reference

Whisper
Yolov8