-
Notifications
You must be signed in to change notification settings - Fork 2
/
rax.c
1893 lines (1740 loc) · 72.7 KB
/
rax.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Rax -- A radix tree implementation.
*
* Copyright (c) 2017-2018, Salvatore Sanfilippo <antirez at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stdio.h>
#include <errno.h>
#include <math.h>
#include "rax.h"
#ifndef RAX_MALLOC_INCLUDE
#define RAX_MALLOC_INCLUDE "rax_malloc.h"
#endif
#include RAX_MALLOC_INCLUDE
/* This is a special pointer that is guaranteed to never have the same value
* of a radix tree node. It's used in order to report "not found" error without
* requiring the function to have multiple return values. */
void *raxNotFound = (void*)"rax-not-found-pointer";
/* -------------------------------- Debugging ------------------------------ */
void raxDebugShowNode(const char *msg, raxNode *n);
/* Turn debugging messages on/off by compiling with RAX_DEBUG_MSG macro on.
* When RAX_DEBUG_MSG is defined by default Rax operations will emit a lot
* of debugging info to the standard output, however you can still turn
* debugging on/off in order to enable it only when you suspect there is an
* operation causing a bug using the function raxSetDebugMsg(). */
#ifdef RAX_DEBUG_MSG
#define debugf(...) \
if (raxDebugMsg) { \
printf("%s:%s:%d:\t", __FILE__, __FUNCTION__, __LINE__); \
printf(__VA_ARGS__); \
fflush(stdout); \
}
#define debugnode(msg,n) raxDebugShowNode(msg,n)
#else
#define debugf(...)
#define debugnode(msg,n)
#endif
/* By default log debug info if RAX_DEBUG_MSG is defined. */
static int raxDebugMsg = 1;
/* When debug messages are enabled, turn them on/off dynamically. By
* default they are enabled. Set the state to 0 to disable, and 1 to
* re-enable. */
void raxSetDebugMsg(int onoff) {
raxDebugMsg = onoff;
}
/* ------------------------- raxStack functions --------------------------
* The raxStack is a simple stack of pointers that is capable of switching
* from using a stack-allocated array to dynamic heap once a given number of
* items are reached. It is used in order to retain the list of parent nodes
* while walking the radix tree in order to implement certain operations that
* need to navigate the tree upward.
* ------------------------------------------------------------------------- */
/* Initialize the stack. */
static inline void raxStackInit(raxStack *ts) {
ts->stack = ts->static_items;
ts->items = 0;
ts->maxitems = RAX_STACK_STATIC_ITEMS;
ts->oom = 0;
}
/* Push an item into the stack, returns 1 on success, 0 on out of memory. */
static inline int raxStackPush(raxStack *ts, void *ptr) {
if (ts->items == ts->maxitems) {
if (ts->stack == ts->static_items) {
ts->stack = rax_malloc(sizeof(void*)*ts->maxitems*2);
if (ts->stack == NULL) {
ts->stack = ts->static_items;
ts->oom = 1;
errno = ENOMEM;
return 0;
}
memcpy(ts->stack,ts->static_items,sizeof(void*)*ts->maxitems);
} else {
void **newalloc = rax_realloc(ts->stack,sizeof(void*)*ts->maxitems*2);
if (newalloc == NULL) {
ts->oom = 1;
errno = ENOMEM;
return 0;
}
ts->stack = newalloc;
}
ts->maxitems *= 2;
}
ts->stack[ts->items] = ptr;
ts->items++;
return 1;
}
/* Pop an item from the stack, the function returns NULL if there are no
* items to pop. */
static inline void *raxStackPop(raxStack *ts) {
if (ts->items == 0) return NULL;
ts->items--;
return ts->stack[ts->items];
}
/* Return the stack item at the top of the stack without actually consuming
* it. */
static inline void *raxStackPeek(raxStack *ts) {
if (ts->items == 0) return NULL;
return ts->stack[ts->items-1];
}
/* Free the stack in case we used heap allocation. */
static inline void raxStackFree(raxStack *ts) {
if (ts->stack != ts->static_items) rax_free(ts->stack);
}
/* ----------------------------------------------------------------------------
* Radix tree implementation
* --------------------------------------------------------------------------*/
/* Return the padding needed in the characters section of a node having size
* 'nodesize'. The padding is needed to store the child pointers to aligned
* addresses. Note that we add 4 to the node size because the node has a four
* bytes header. */
#define raxPadding(nodesize) ((sizeof(void*)-((nodesize+4) % sizeof(void*))) & (sizeof(void*)-1))
/* Return the pointer to the last child pointer in a node. For the compressed
* nodes this is the only child pointer. */
#define raxNodeLastChildPtr(n) ((raxNode**) ( \
((char*)(n)) + \
raxNodeCurrentLength(n) - \
sizeof(raxNode*) - \
(((n)->iskey && !(n)->isnull) ? sizeof(void*) : 0) \
))
/* Return the pointer to the first child pointer. */
#define raxNodeFirstChildPtr(n) ((raxNode**) ( \
(n)->data + \
(n)->size + \
raxPadding((n)->size)))
/* Return the current total size of the node. Note that the second line
* computes the padding after the string of characters, needed in order to
* save pointers to aligned addresses. */
#define raxNodeCurrentLength(n) ( \
sizeof(raxNode)+(n)->size+ \
raxPadding((n)->size)+ \
((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \
(((n)->iskey && !(n)->isnull)*sizeof(void*)) \
)
/* Allocate a new non compressed node with the specified number of children.
* If datafiled is true, the allocation is made large enough to hold the
* associated data pointer.
* Returns the new node pointer. On out of memory NULL is returned. */
raxNode *raxNewNode(size_t children, int datafield) {
size_t nodesize = sizeof(raxNode)+children+raxPadding(children)+
sizeof(raxNode*)*children;
if (datafield) nodesize += sizeof(void*);
raxNode *node = rax_malloc(nodesize);
if (node == NULL) return NULL;
node->iskey = 0;
node->isnull = 0;
node->iscompr = 0;
node->size = children;
return node;
}
/* Allocate a new rax and return its pointer. On out of memory the function
* returns NULL. */
rax *raxNew(void) {
rax *rax = rax_malloc(sizeof(*rax));
if (rax == NULL) return NULL;
rax->numele = 0;
rax->numnodes = 1;
rax->head = raxNewNode(0,0);
if (rax->head == NULL) {
rax_free(rax);
return NULL;
} else {
return rax;
}
}
/* realloc the node to make room for auxiliary data in order
* to store an item in that node. On out of memory NULL is returned. */
raxNode *raxReallocForData(raxNode *n, void *data) {
if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */
size_t curlen = raxNodeCurrentLength(n);
return rax_realloc(n,curlen+sizeof(void*));
}
/* Set the node auxiliary data to the specified pointer. */
void raxSetData(raxNode *n, void *data) {
n->iskey = 1;
if (data != NULL) {
n->isnull = 0;
void **ndata = (void**)
((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
memcpy(ndata,&data,sizeof(data));
} else {
n->isnull = 1;
}
}
/* Get the node auxiliary data. */
void *raxGetData(raxNode *n) {
if (n->isnull) return NULL;
void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
void *data;
memcpy(&data,ndata,sizeof(data));
return data;
}
/* Add a new child to the node 'n' representing the character 'c' and return
* its new pointer, as well as the child pointer by reference. Additionally
* '***parentlink' is populated with the raxNode pointer-to-pointer of where
* the new child was stored, which is useful for the caller to replace the
* child pointer if it gets reallocated.
*
* On success the new parent node pointer is returned (it may change because
* of the realloc, so the caller should discard 'n' and use the new value).
* On out of memory NULL is returned, and the old node is still valid. */
raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) {
assert(n->iscompr == 0);
size_t curlen = raxNodeCurrentLength(n);
n->size++;
size_t newlen = raxNodeCurrentLength(n);
n->size--; /* For now restore the orignal size. We'll update it only on
success at the end. */
/* Alloc the new child we will link to 'n'. */
raxNode *child = raxNewNode(0,0);
if (child == NULL) return NULL;
/* Make space in the original node. */
raxNode *newn = rax_realloc(n,newlen);
if (newn == NULL) {
rax_free(child);
return NULL;
}
n = newn;
/* After the reallocation, we have up to 8/16 (depending on the system
* pointer size, and the required node padding) bytes at the end, that is,
* the additional char in the 'data' section, plus one pointer to the new
* child, plus the padding needed in order to store addresses into aligned
* locations.
*
* So if we start with the following node, having "abde" edges.
*
* Note:
* - We assume 4 bytes pointer for simplicity.
* - Each space below corresponds to one byte
*
* [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|
*
* After the reallocation we need: 1 byte for the new edge character
* plus 4 bytes for a new child pointer (assuming 32 bit machine).
* However after adding 1 byte to the edge char, the header + the edge
* characters are no longer aligned, so we also need 3 bytes of padding.
* In total the reallocation will add 1+4+3 bytes = 8 bytes:
*
* (Blank bytes are represented by ".")
*
* [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|[....][....]
*
* Let's find where to insert the new child in order to make sure
* it is inserted in-place lexicographically. Assuming we are adding
* a child "c" in our case pos will be = 2 after the end of the following
* loop. */
int pos;
for (pos = 0; pos < n->size; pos++) {
if (n->data[pos] > c) break;
}
/* Now, if present, move auxiliary data pointer at the end
* so that we can mess with the other data without overwriting it.
* We will obtain something like that:
*
* [HDR*][abde][Aptr][Bptr][Dptr][Eptr][....][....]|AUXP|
*/
unsigned char *src, *dst;
if (n->iskey && !n->isnull) {
src = ((unsigned char*)n+curlen-sizeof(void*));
dst = ((unsigned char*)n+newlen-sizeof(void*));
memmove(dst,src,sizeof(void*));
}
/* Compute the "shift", that is, how many bytes we need to move the
* pointers section forward because of the addition of the new child
* byte in the string section. Note that if we had no padding, that
* would be always "1", since we are adding a single byte in the string
* section of the node (where now there is "abde" basically).
*
* However we have padding, so it could be zero, or up to 8.
*
* Another way to think at the shift is, how many bytes we need to
* move child pointers forward *other than* the obvious sizeof(void*)
* needed for the additional pointer itself. */
size_t shift = newlen - curlen - sizeof(void*);
/* We said we are adding a node with edge 'c'. The insertion
* point is between 'b' and 'd', so the 'pos' variable value is
* the index of the first child pointer that we need to move forward
* to make space for our new pointer.
*
* To start, move all the child pointers after the insertion point
* of shift+sizeof(pointer) bytes on the right, to obtain:
*
* [HDR*][abde][Aptr][Bptr][....][....][Dptr][Eptr]|AUXP|
*/
src = n->data+n->size+
raxPadding(n->size)+
sizeof(raxNode*)*pos;
memmove(src+shift+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos));
/* Move the pointers to the left of the insertion position as well. Often
* we don't need to do anything if there was already some padding to use. In
* that case the final destination of the pointers will be the same, however
* in our example there was no pre-existing padding, so we added one byte
* plus thre bytes of padding. After the next memmove() things will look
* like thata:
*
* [HDR*][abde][....][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
*/
if (shift) {
src = (unsigned char*) raxNodeFirstChildPtr(n);
memmove(src+shift,src,sizeof(raxNode*)*pos);
}
/* Now make the space for the additional char in the data section,
* but also move the pointers before the insertion point to the right
* by shift bytes, in order to obtain the following:
*
* [HDR*][ab.d][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
*/
src = n->data+pos;
memmove(src+1,src,n->size-pos);
/* We can now set the character and its child node pointer to get:
*
* [HDR*][abcd][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
* [HDR*][abcd][e...][Aptr][Bptr][Cptr][Dptr][Eptr]|AUXP|
*/
n->data[pos] = c;
n->size++;
src = (unsigned char*) raxNodeFirstChildPtr(n);
raxNode **childfield = (raxNode**)(src+sizeof(raxNode*)*pos);
memcpy(childfield,&child,sizeof(child));
*childptr = child;
*parentlink = childfield;
return n;
}
/* Turn the node 'n', that must be a node without any children, into a
* compressed node representing a set of nodes linked one after the other
* and having exactly one child each. The node can be a key or not: this
* property and the associated value if any will be preserved.
*
* The function also returns a child node, since the last node of the
* compressed chain cannot be part of the chain: it has zero children while
* we can only compress inner nodes with exactly one child each. */
raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) {
assert(n->size == 0 && n->iscompr == 0);
void *data = NULL; /* Initialized only to avoid warnings. */
size_t newsize;
debugf("Compress node: %.*s\n", (int)len,s);
/* Allocate the child to link to this node. */
*child = raxNewNode(0,0);
if (*child == NULL) return NULL;
/* Make space in the parent node. */
newsize = sizeof(raxNode)+len+raxPadding(len)+sizeof(raxNode*);
if (n->iskey) {
data = raxGetData(n); /* To restore it later. */
if (!n->isnull) newsize += sizeof(void*);
}
raxNode *newn = rax_realloc(n,newsize);
if (newn == NULL) {
rax_free(*child);
return NULL;
}
n = newn;
n->iscompr = 1;
n->size = len;
memcpy(n->data,s,len);
if (n->iskey) raxSetData(n,data);
raxNode **childfield = raxNodeLastChildPtr(n);
memcpy(childfield,child,sizeof(*child));
return n;
}
/* Low level function that walks the tree looking for the string
* 's' of 'len' bytes. The function returns the number of characters
* of the key that was possible to process: if the returned integer
* is the same as 'len', then it means that the node corresponding to the
* string was found (however it may not be a key in case the node->iskey is
* zero or if simply we stopped in the middle of a compressed node, so that
* 'splitpos' is non zero).
*
* Otherwise if the returned integer is not the same as 'len', there was an
* early stop during the tree walk because of a character mismatch.
*
* The node where the search ended (because the full string was processed
* or because there was an early stop) is returned by reference as
* '*stopnode' if the passed pointer is not NULL. This node link in the
* parent's node is returned as '*plink' if not NULL. Finally, if the
* search stopped in a compressed node, '*splitpos' returns the index
* inside the compressed node where the search ended. This is useful to
* know where to split the node for insertion.
*
* Note that when we stop in the middle of a compressed node with
* a perfect match, this function will return a length equal to the
* 'len' argument (all the key matched), and will return a *splitpos which is
* always positive (that will represent the index of the character immediately
* *after* the last match in the current compressed node).
*
* When instead we stop at a compressed node and *splitpos is zero, it
* means that the current node represents the key (that is, none of the
* compressed node characters are needed to represent the key, just all
* its parents nodes). */
static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) {
raxNode *h = rax->head;
raxNode **parentlink = &rax->head;
size_t i = 0; /* Position in the string. */
size_t j = 0; /* Position in the node children (or bytes if compressed).*/
while(h->size && i < len) {
debugnode("Lookup current node",h);
unsigned char *v = h->data;
if (h->iscompr) {
for (j = 0; j < h->size && i < len; j++, i++) {
if (v[j] != s[i]) break;
}
if (j != h->size) break;
} else {
/* Even when h->size is large, linear scan provides good
* performances compared to other approaches that are in theory
* more sounding, like performing a binary search. */
for (j = 0; j < h->size; j++) {
if (v[j] == s[i]) break;
}
if (j == h->size) break;
i++;
}
if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */
raxNode **children = raxNodeFirstChildPtr(h);
if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */
memcpy(&h,children+j,sizeof(h));
parentlink = children+j;
j = 0; /* If the new node is compressed and we do not
iterate again (since i == l) set the split
position to 0 to signal this node represents
the searched key. */
}
debugnode("Lookup stop node is",h);
if (stopnode) *stopnode = h;
if (plink) *plink = parentlink;
if (splitpos && h->iscompr) *splitpos = j;
return i;
}
/* Insert the element 's' of size 'len', setting as auxiliary data
* the pointer 'data'. If the element is already present, the associated
* data is updated (only if 'overwrite' is set to 1), and 0 is returned,
* otherwise the element is inserted and 1 is returned. On out of memory the
* function returns 0 as well but sets errno to ENOMEM, otherwise errno will
* be set to 0.
*/
int raxGenericInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old, int overwrite) {
size_t i;
int j = 0; /* Split position. If raxLowWalk() stops in a compressed
node, the index 'j' represents the char we stopped within the
compressed node, that is, the position where to split the
node for insertion. */
raxNode *h, **parentlink;
debugf("### Insert %.*s with value %p\n", (int)len, s, data);
i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL);
/* If i == len we walked following the whole string. If we are not
* in the middle of a compressed node, the string is either already
* inserted or this middle node is currently not a key, but can represent
* our key. We have just to reallocate the node and make space for the
* data pointer. */
if (i == len && (!h->iscompr || j == 0 /* not in the middle if j is 0 */)) {
debugf("### Insert: node representing key exists\n");
/* Make space for the value pointer if needed. */
if (!h->iskey || (h->isnull && overwrite)) {
h = raxReallocForData(h,data);
if (h) memcpy(parentlink,&h,sizeof(h));
}
if (h == NULL) {
errno = ENOMEM;
return 0;
}
/* Update the existing key if there is already one. */
if (h->iskey) {
if (old) *old = raxGetData(h);
if (overwrite) raxSetData(h,data);
errno = 0;
return 0; /* Element already exists. */
}
/* Otherwise set the node as a key. Note that raxSetData()
* will set h->iskey. */
raxSetData(h,data);
rax->numele++;
return 1; /* Element inserted. */
}
/* If the node we stopped at is a compressed node, we need to
* split it before to continue.
*
* Splitting a compressed node have a few possible cases.
* Imagine that the node 'h' we are currently at is a compressed
* node contaning the string "ANNIBALE" (it means that it represents
* nodes A -> N -> N -> I -> B -> A -> L -> E with the only child
* pointer of this node pointing at the 'E' node, because remember that
* we have characters at the edges of the graph, not inside the nodes
* themselves.
*
* In order to show a real case imagine our node to also point to
* another compressed node, that finally points at the node without
* children, representing 'O':
*
* "ANNIBALE" -> "SCO" -> []
*
* When inserting we may face the following cases. Note that all the cases
* require the insertion of a non compressed node with exactly two
* children, except for the last case which just requires splitting a
* compressed node.
*
* 1) Inserting "ANNIENTARE"
*
* |B| -> "ALE" -> "SCO" -> []
* "ANNI" -> |-|
* |E| -> (... continue algo ...) "NTARE" -> []
*
* 2) Inserting "ANNIBALI"
*
* |E| -> "SCO" -> []
* "ANNIBAL" -> |-|
* |I| -> (... continue algo ...) []
*
* 3) Inserting "AGO" (Like case 1, but set iscompr = 0 into original node)
*
* |N| -> "NIBALE" -> "SCO" -> []
* |A| -> |-|
* |G| -> (... continue algo ...) |O| -> []
*
* 4) Inserting "CIAO"
*
* |A| -> "NNIBALE" -> "SCO" -> []
* |-|
* |C| -> (... continue algo ...) "IAO" -> []
*
* 5) Inserting "ANNI"
*
* "ANNI" -> "BALE" -> "SCO" -> []
*
* The final algorithm for insertion covering all the above cases is as
* follows.
*
* ============================= ALGO 1 =============================
*
* For the above cases 1 to 4, that is, all cases where we stopped in
* the middle of a compressed node for a character mismatch, do:
*
* Let $SPLITPOS be the zero-based index at which, in the
* compressed node array of characters, we found the mismatching
* character. For example if the node contains "ANNIBALE" and we add
* "ANNIENTARE" the $SPLITPOS is 4, that is, the index at which the
* mismatching character is found.
*
* 1. Save the current compressed node $NEXT pointer (the pointer to the
* child element, that is always present in compressed nodes).
*
* 2. Create "split node" having as child the non common letter
* at the compressed node. The other non common letter (at the key)
* will be added later as we continue the normal insertion algorithm
* at step "6".
*
* 3a. IF $SPLITPOS == 0:
* Replace the old node with the split node, by copying the auxiliary
* data if any. Fix parent's reference. Free old node eventually
* (we still need its data for the next steps of the algorithm).
*
* 3b. IF $SPLITPOS != 0:
* Trim the compressed node (reallocating it as well) in order to
* contain $splitpos characters. Change chilid pointer in order to link
* to the split node. If new compressed node len is just 1, set
* iscompr to 0 (layout is the same). Fix parent's reference.
*
* 4a. IF the postfix len (the length of the remaining string of the
* original compressed node after the split character) is non zero,
* create a "postfix node". If the postfix node has just one character
* set iscompr to 0, otherwise iscompr to 1. Set the postfix node
* child pointer to $NEXT.
*
* 4b. IF the postfix len is zero, just use $NEXT as postfix pointer.
*
* 5. Set child[0] of split node to postfix node.
*
* 6. Set the split node as the current node, set current index at child[1]
* and continue insertion algorithm as usually.
*
* ============================= ALGO 2 =============================
*
* For case 5, that is, if we stopped in the middle of a compressed
* node but no mismatch was found, do:
*
* Let $SPLITPOS be the zero-based index at which, in the
* compressed node array of characters, we stopped iterating because
* there were no more keys character to match. So in the example of
* the node "ANNIBALE", addig the string "ANNI", the $SPLITPOS is 4.
*
* 1. Save the current compressed node $NEXT pointer (the pointer to the
* child element, that is always present in compressed nodes).
*
* 2. Create a "postfix node" containing all the characters from $SPLITPOS
* to the end. Use $NEXT as the postfix node child pointer.
* If the postfix node length is 1, set iscompr to 0.
* Set the node as a key with the associated value of the new
* inserted key.
*
* 3. Trim the current node to contain the first $SPLITPOS characters.
* As usually if the new node length is just 1, set iscompr to 0.
* Take the iskey / associated value as it was in the orignal node.
* Fix the parent's reference.
*
* 4. Set the postfix node as the only child pointer of the trimmed
* node created at step 1.
*/
/* ------------------------- ALGORITHM 1 --------------------------- */
if (h->iscompr && i != len) {
debugf("ALGO 1: Stopped at compressed node %.*s (%p)\n",
h->size, h->data, (void*)h);
debugf("Still to insert: %.*s\n", (int)(len-i), s+i);
debugf("Splitting at %d: '%c'\n", j, ((char*)h->data)[j]);
debugf("Other (key) letter is '%c'\n", s[i]);
/* 1: Save next pointer. */
raxNode **childfield = raxNodeLastChildPtr(h);
raxNode *next;
memcpy(&next,childfield,sizeof(next));
debugf("Next is %p\n", (void*)next);
debugf("iskey %d\n", h->iskey);
if (h->iskey) {
debugf("key value is %p\n", raxGetData(h));
}
/* Set the length of the additional nodes we will need. */
size_t trimmedlen = j;
size_t postfixlen = h->size - j - 1;
int split_node_is_key = !trimmedlen && h->iskey && !h->isnull;
size_t nodesize;
/* 2: Create the split node. Also allocate the other nodes we'll need
* ASAP, so that it will be simpler to handle OOM. */
raxNode *splitnode = raxNewNode(1, split_node_is_key);
raxNode *trimmed = NULL;
raxNode *postfix = NULL;
if (trimmedlen) {
nodesize = sizeof(raxNode)+trimmedlen+raxPadding(trimmedlen)+
sizeof(raxNode*);
if (h->iskey && !h->isnull) nodesize += sizeof(void*);
trimmed = rax_malloc(nodesize);
}
if (postfixlen) {
nodesize = sizeof(raxNode)+postfixlen+raxPadding(postfixlen)+
sizeof(raxNode*);
postfix = rax_malloc(nodesize);
}
/* OOM? Abort now that the tree is untouched. */
if (splitnode == NULL ||
(trimmedlen && trimmed == NULL) ||
(postfixlen && postfix == NULL))
{
rax_free(splitnode);
rax_free(trimmed);
rax_free(postfix);
errno = ENOMEM;
return 0;
}
splitnode->data[0] = h->data[j];
if (j == 0) {
/* 3a: Replace the old node with the split node. */
if (h->iskey) {
void *ndata = raxGetData(h);
raxSetData(splitnode,ndata);
}
memcpy(parentlink,&splitnode,sizeof(splitnode));
} else {
/* 3b: Trim the compressed node. */
trimmed->size = j;
memcpy(trimmed->data,h->data,j);
trimmed->iscompr = j > 1 ? 1 : 0;
trimmed->iskey = h->iskey;
trimmed->isnull = h->isnull;
if (h->iskey && !h->isnull) {
void *ndata = raxGetData(h);
raxSetData(trimmed,ndata);
}
raxNode **cp = raxNodeLastChildPtr(trimmed);
memcpy(cp,&splitnode,sizeof(splitnode));
memcpy(parentlink,&trimmed,sizeof(trimmed));
parentlink = cp; /* Set parentlink to splitnode parent. */
rax->numnodes++;
}
/* 4: Create the postfix node: what remains of the original
* compressed node after the split. */
if (postfixlen) {
/* 4a: create a postfix node. */
postfix->iskey = 0;
postfix->isnull = 0;
postfix->size = postfixlen;
postfix->iscompr = postfixlen > 1;
memcpy(postfix->data,h->data+j+1,postfixlen);
raxNode **cp = raxNodeLastChildPtr(postfix);
memcpy(cp,&next,sizeof(next));
rax->numnodes++;
} else {
/* 4b: just use next as postfix node. */
postfix = next;
}
/* 5: Set splitnode first child as the postfix node. */
raxNode **splitchild = raxNodeLastChildPtr(splitnode);
memcpy(splitchild,&postfix,sizeof(postfix));
/* 6. Continue insertion: this will cause the splitnode to
* get a new child (the non common character at the currently
* inserted key). */
rax_free(h);
h = splitnode;
} else if (h->iscompr && i == len) {
/* ------------------------- ALGORITHM 2 --------------------------- */
debugf("ALGO 2: Stopped at compressed node %.*s (%p) j = %d\n",
h->size, h->data, (void*)h, j);
/* Allocate postfix & trimmed nodes ASAP to fail for OOM gracefully. */
size_t postfixlen = h->size - j;
size_t nodesize = sizeof(raxNode)+postfixlen+raxPadding(postfixlen)+
sizeof(raxNode*);
if (data != NULL) nodesize += sizeof(void*);
raxNode *postfix = rax_malloc(nodesize);
nodesize = sizeof(raxNode)+j+raxPadding(j)+sizeof(raxNode*);
if (h->iskey && !h->isnull) nodesize += sizeof(void*);
raxNode *trimmed = rax_malloc(nodesize);
if (postfix == NULL || trimmed == NULL) {
rax_free(postfix);
rax_free(trimmed);
errno = ENOMEM;
return 0;
}
/* 1: Save next pointer. */
raxNode **childfield = raxNodeLastChildPtr(h);
raxNode *next;
memcpy(&next,childfield,sizeof(next));
/* 2: Create the postfix node. */
postfix->size = postfixlen;
postfix->iscompr = postfixlen > 1;
postfix->iskey = 1;
postfix->isnull = 0;
memcpy(postfix->data,h->data+j,postfixlen);
raxSetData(postfix,data);
raxNode **cp = raxNodeLastChildPtr(postfix);
memcpy(cp,&next,sizeof(next));
rax->numnodes++;
/* 3: Trim the compressed node. */
trimmed->size = j;
trimmed->iscompr = j > 1;
trimmed->iskey = 0;
trimmed->isnull = 0;
memcpy(trimmed->data,h->data,j);
memcpy(parentlink,&trimmed,sizeof(trimmed));
if (h->iskey) {
void *aux = raxGetData(h);
raxSetData(trimmed,aux);
}
/* Fix the trimmed node child pointer to point to
* the postfix node. */
cp = raxNodeLastChildPtr(trimmed);
memcpy(cp,&postfix,sizeof(postfix));
/* Finish! We don't need to continue with the insertion
* algorithm for ALGO 2. The key is already inserted. */
rax->numele++;
rax_free(h);
return 1; /* Key inserted. */
}
/* We walked the radix tree as far as we could, but still there are left
* chars in our string. We need to insert the missing nodes. */
while(i < len) {
raxNode *child;
/* If this node is going to have a single child, and there
* are other characters, so that that would result in a chain
* of single-childed nodes, turn it into a compressed node. */
if (h->size == 0 && len-i > 1) {
debugf("Inserting compressed node\n");
size_t comprsize = len-i;
if (comprsize > RAX_NODE_MAX_SIZE)
comprsize = RAX_NODE_MAX_SIZE;
raxNode *newh = raxCompressNode(h,s+i,comprsize,&child);
if (newh == NULL) goto oom;
h = newh;
memcpy(parentlink,&h,sizeof(h));
parentlink = raxNodeLastChildPtr(h);
i += comprsize;
} else {
debugf("Inserting normal node\n");
raxNode **new_parentlink;
raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink);
if (newh == NULL) goto oom;
h = newh;
memcpy(parentlink,&h,sizeof(h));
parentlink = new_parentlink;
i++;
}
rax->numnodes++;
h = child;
}
raxNode *newh = raxReallocForData(h,data);
if (newh == NULL) goto oom;
h = newh;
if (!h->iskey) rax->numele++;
raxSetData(h,data);
memcpy(parentlink,&h,sizeof(h));
return 1; /* Element inserted. */
oom:
/* This code path handles out of memory after part of the sub-tree was
* already modified. Set the node as a key, and then remove it. However we
* do that only if the node is a terminal node, otherwise if the OOM
* happened reallocating a node in the middle, we don't need to free
* anything. */
if (h->size == 0) {
h->isnull = 1;
h->iskey = 1;
rax->numele++; /* Compensate the next remove. */
assert(raxRemove(rax,s,i,NULL) != 0);
}
errno = ENOMEM;
return 0;
}
/* Overwriting insert. Just a wrapper for raxGenericInsert() that will
* update the element if there is already one for the same key. */
int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
return raxGenericInsert(rax,s,len,data,old,1);
}
/* Non overwriting insert function: this if an element with the same key
* exists, the value is not updated and the function returns 0.
* This is a just a wrapper for raxGenericInsert(). */
int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
return raxGenericInsert(rax,s,len,data,old,0);
}
/* Find a key in the rax, returns raxNotFound special void pointer value
* if the item was not found, otherwise the value associated with the
* item is returned. */
void *raxFind(rax *rax, unsigned char *s, size_t len) {
raxNode *h;
debugf("### Lookup: %.*s\n", (int)len, s);
int splitpos = 0;
size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,NULL);
if (i != len || (h->iscompr && splitpos != 0) || !h->iskey)
return raxNotFound;
return raxGetData(h);
}
/* Return the memory address where the 'parent' node stores the specified
* 'child' pointer, so that the caller can update the pointer with another
* one if needed. The function assumes it will find a match, otherwise the
* operation is an undefined behavior (it will continue scanning the
* memory without any bound checking). */
raxNode **raxFindParentLink(raxNode *parent, raxNode *child) {
raxNode **cp = raxNodeFirstChildPtr(parent);
raxNode *c;
while(1) {
memcpy(&c,cp,sizeof(c));
if (c == child) break;
cp++;
}
return cp;
}
/* Low level child removal from node. The new node pointer (after the child
* removal) is returned. Note that this function does not fix the pointer
* of the parent node in its parent, so this task is up to the caller.
* The function never fails for out of memory. */
raxNode *raxRemoveChild(raxNode *parent, raxNode *child) {
debugnode("raxRemoveChild before", parent);
/* If parent is a compressed node (having a single child, as for definition
* of the data structure), the removal of the child consists into turning
* it into a normal node without children. */
if (parent->iscompr) {
void *data = NULL;
if (parent->iskey) data = raxGetData(parent);
parent->isnull = 0;
parent->iscompr = 0;
parent->size = 0;
if (parent->iskey) raxSetData(parent,data);
debugnode("raxRemoveChild after", parent);
return parent;
}
/* Otherwise we need to scan for the child pointer and memmove()
* accordingly.
*
* 1. To start we seek the first element in both the children
* pointers and edge bytes in the node. */
raxNode **cp = raxNodeFirstChildPtr(parent);
raxNode **c = cp;
unsigned char *e = parent->data;
/* 2. Search the child pointer to remove inside the array of children
* pointers. */
while(1) {
raxNode *aux;
memcpy(&aux,c,sizeof(aux));
if (aux == child) break;
c++;
e++;
}
/* 3. Remove the edge and the pointer by memmoving the remaining children
* pointer and edge bytes one position before. */
int taillen = parent->size - (e - parent->data) - 1;
debugf("raxRemoveChild tail len: %d\n", taillen);
memmove(e,e+1,taillen);
/* Compute the shift, that is the amount of bytes we should move our
* child pointers to the left, since the removal of one edge character
* and the corresponding padding change, may change the layout.
* We just check if in the old version of the node there was at the
* end just a single byte and all padding: in that case removing one char
* will remove a whole sizeof(void*) word. */
size_t shift = ((parent->size+4) % sizeof(void*)) == 1 ? sizeof(void*) : 0;
/* Move the children pointers before the deletion point. */
if (shift)
memmove(((char*)cp)-shift,cp,(parent->size-taillen-1)*sizeof(raxNode**));
/* Move the remaining "tail" pointers at the right position as well. */