forked from mengmengliu1998/GATraj
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
174 lines (171 loc) · 6.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
'''
Train script
Author: Mengmeng Liu
Date: 2022/09/24
'''
import argparse
import ast
from Processor import *
import numpy as np
import random
import torch
import yaml
def get_parser():
parser = argparse.ArgumentParser(description='GATraj')
parser.add_argument(
'--ifvalid',default=True,type=ast.literal_eval,
help="=False,use all train set to train,"
"=True,use train set to train and valid")
parser.add_argument(
'--mlp_decoder',default=False,type=ast.literal_eval)
parser.add_argument(
'--input_offset',default=True,type=ast.literal_eval)
parser.add_argument(
'--input_position',default=False,type=ast.literal_eval)
parser.add_argument(
'--input_mix',default=False,type=ast.literal_eval)
parser.add_argument(
'--ifGaussian',default=False,type=ast.literal_eval)
parser.add_argument(
'--SR',default=True,type=ast.literal_eval)
parser.add_argument("--pass_time",
default=2,
type=int)
parser.add_argument("--final_mode",
default=20,
type=int)
parser.add_argument("--T_max",
default=1000,
type=int)
parser.add_argument("--eta_min",
default=3e-6,
type=float)
parser.add_argument(
'--output_size',default=2,type=int)
parser.add_argument(
'--input_size',default=2,type=int)
parser.add_argument(
'--min_obs',default=8,type=int)
parser.add_argument('--num_pred', type=int, default=1, help='This is the number of predictions for each agent')
parser.add_argument('--ratio', type=float, default=0.95, help='The overlap ratio of coexisting for group detection')
parser.add_argument('--z_dim', type=int, default=32, help='This is the size of the latent variable')
parser.add_argument('--hidden_size', type=int, default=64, help='The size of LSTM hidden state')
parser.add_argument('--x_encoder_layers', type=int, default=3, help='Number of transformer block layers for x_encoder')
parser.add_argument('--x_encoder_head', type=int, default=8, help='Head number of x_encoder')
parser.add_argument(
'--gpu', default=0,type=int,
help='gpu id')
parser.add_argument(
'--using_cuda',default=True,type=ast.literal_eval) # We did not test on cpu
# You may change these arguments (model selection and dirs)
parser.add_argument(
'--test_set',default=1,type=int,
help='Set this value to 0~4 for ETH-univ, ETH-hotel, UCY-zara01, UCY-zara02, UCY-univ')
parser.add_argument(
'--base_dir',default='.',
help='Base directory including these scrits.')
parser.add_argument(
'--save_base_dir',default='./savedata/',
help='Directory for saving caches and models.')
parser.add_argument(
'--phase', default='train',
help='Set this value to \'train\' or \'test\'')
parser.add_argument(
'--GT',default=True)
parser.add_argument(
'--train_model', default='GATraj',
help='Your model name')
parser.add_argument(
'--load_model', default=0,type=int,
help="load model weights from this index before training or testing")
parser.add_argument(
'--model', default='models.GATraj')
######################################
parser.add_argument(
'--dataset',default='eth5')
parser.add_argument(
'--save_dir')
parser.add_argument(
'--model_dir')
parser.add_argument(
'--config')
parser.add_argument(
'--val_fraction',default=0,type=float)
#Perprocess
parser.add_argument(
'--seq_length',default=20,type=int)
parser.add_argument(
'--obs_length',default=8,type=int)
parser.add_argument(
'--pred_length',default=12,type=int)
parser.add_argument(
'--batch_size',default=64,type=int)
parser.add_argument(
'--show_step',default=40,type=int)
parser.add_argument(
'--step_ratio',default=0.5,type=int)
parser.add_argument(
'--lr_step',default=20,type=int)
parser.add_argument(
'--num_epochs',default=1000,type=int)
parser.add_argument(
'--ifshow_detail',default=True,type=ast.literal_eval)
parser.add_argument(
'--randomRotate',default=True,type=ast.literal_eval,
help="=True:random rotation of each trajectory fragment")
parser.add_argument(
'--neighbor_thred',default=10,type=int)
parser.add_argument(
'--learning_rate',default=1e-04,type=float)
parser.add_argument(
'--clip',default=10,type=int)
return parser
def load_arg(p):
# save arg
if os.path.exists(p.config):
with open(p.config, 'r') as f:
# default_arg = yaml.load(f,Loader=yaml.FullLoader)
default_arg = yaml.safe_load(f)
key = vars(p).keys()
for k in default_arg.keys():
if k not in key:
print('WRONG ARG: {}'.format(k))
try:
assert (k in key)
except:
s=1
parser.set_defaults(**default_arg)
return parser.parse_args()
else:
return False
def save_arg(args):
# save arg
arg_dict = vars(args)
if not os.path.exists(args.model_dir):
os.makedirs(args.model_dir)
with open(args.config, 'w') as f:
yaml.dump(arg_dict, f)
def prepare_seed(rand_seed):
np.random.seed(rand_seed)
random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed_all(rand_seed)
if __name__ == '__main__':
parser = get_parser()
p = parser.parse_args()
prepare_seed(1)
p.save_dir=p.save_base_dir+str(p.test_set)+'/' # ./savedata/1'
p.model_dir=p.save_base_dir+str(p.test_set)+'/'+p.train_model+'/' # ./savedata/1/GATraj/'
p.config=p.model_dir+'/config_'+p.phase+'.yaml' # ./savedata/1/GATraj/config_train.ymal'
# print(p.seq_length) # 5 + 8 = 13
if not load_arg(p):
save_arg(p)
args = load_arg(p)
print(args.num_pred)
if args.using_cuda:
torch.cuda.set_device(args.gpu)
processor = Processor(args)
if args.phase=='test':
processor.playtest()
else:
processor.playtrain()