Distributive Dynamic Spectrum Access Through Deep Reinforcement Learning: A Reservoir Computing-Based Approach (IoT-J-2019)
Hao-Hsuan Chang, Hao Song, Yang Yi, Jianzhong (Charlie) Zhang, Haibo He, and Lingjia Liu
IEEE Internet of Things Journal, Vol. 6, No. 2, pp. 1938-1948, April 2019.
A combination of reservoir computing (RC) and deep Q-network (DQN) is utilized to design spectrum access strategies for secondary users (SUs) in dynamic spectrum access (DSA) networks.
If you find the code useful in your research, please cite:
@article{Chang2019DSA,
author={Chang, Hao-Hsuan and Song, Hao and Yi, Yang and Zhang, Jianzhong and He, Haibo and Liu, Lingjia},
journal= {IEEE Internet of Things Journal},
title={Distributive Dynamic Spectrum Access Through Deep Reinforcement Learning: A Reservoir Computing-Based Approach},
year={2019},
volume={6},
number={2},
pages={1938--1948},
month={April}}
>> main.py
>> plot_figure.py