-
Notifications
You must be signed in to change notification settings - Fork 21
/
train.py
executable file
·62 lines (51 loc) · 2.18 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import os
import random
import numpy as np
import __init__ as booger
from datetime import datetime
from utils.utils import *
from modules.trainer import Trainer
from modules.SalsaNextWithMotionAttention import *
def set_seed(seed=1024):
random.seed(seed)
# os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.enabled = False
# If we need to reproduce the results, increase the training speed
# set benchmark = False
# If we don’t need to reproduce the results, improve the network performance as much as possible
# set benchmark = True
if __name__ == '__main__':
parser = get_args(flags="train")
FLAGS, unparsed = parser.parse_known_args()
FLAGS.log = FLAGS.log + '/logs/' + datetime.now().strftime("%Y-%-m-%d-%H:%M") + FLAGS.name
# open arch / data config file
ARCH = load_yaml(FLAGS.arch_cfg)
DATA = load_yaml(FLAGS.data_cfg)
params = SalsaNextWithMotionAttention(nclasses=3, params=ARCH)
pytorch_total_params = sum(p.numel() for p in params.parameters() if p.requires_grad)
del params
print("----------")
print("INTERFACE:")
print(" dataset:", FLAGS.dataset)
print(" arch_cfg:", FLAGS.arch_cfg)
print(" data_cfg:", FLAGS.data_cfg)
# print(" uncertainty:", FLAGS.uncertainty)
print(" Total of Trainable Parameters: {}".format(millify(pytorch_total_params,2)))
print(" log:", FLAGS.log)
print(" pretrained:", FLAGS.pretrained)
print("----------\n")
make_logdir(FLAGS=FLAGS, resume_train=False) # create log folder
check_pretrained_dir(FLAGS.pretrained) # does model folder exist?
backup_to_logdir(FLAGS=FLAGS) # backup code and config files to logdir
set_seed()
# create trainer and start the training
trainer = Trainer(ARCH, DATA, FLAGS.dataset, FLAGS.log, FLAGS.pretrained)
trainer.train()