Haotian Liu, Mu Cai, Yong Jae Lee
Please check out our paper here.
Task | Dataset | Config | Acc. | Download |
---|---|---|---|---|
Pre-training | ShapeNet | pretrain_shapenet.yaml | -- | {w/o,w/} MoCo |
Classification | ScanObjectNN | finetune_scanobject_hardest.yaml | 84.6% | here |
Classification | ScanObjectNN | finetune_scanobject_objectbg.yaml | 89.3% | here |
Classification | ScanObjectNN | finetune_scanobject_objectonly.yaml | 89.7% | here |
Classification | ModelNet40 | finetune_modelnet.yaml | 93.8% | here |
Task | Dataset | Config | AP25 | AP50 | Download |
---|---|---|---|---|---|
Pre-training | ScanNet-Medium | pretrain_scannet_enc3x.yaml | -- | -- | here |
Pre-training | ScanNet-Medium | pretrain_scannet_enc12x.yaml | -- | -- | here |
Detection | ScanNetV2 | finetune_scannetv2_enc3x.sh | 63.4 | 40.6 | here |
Detection | ScanNetV2 | finetune_scannetv2_enc12x.sh | 64.2 | 42.1 | here |
- PyTorch >= 1.7.0
- python >= 3.7
- CUDA >= 9.0
- GCC >= 4.9
- torchvision
pip install -r requirements.txt
bash install.sh
For ModelNet40, ScanObjectNN, and ShapeNetPart datasets, we use ShapeNet for the pre-training of MaskPoint models, and then finetune on these datasets respectively.
For ScanNetV2 object detection dataset, we use ScanNet-Medium for the pre-training. Please refer to the paper Sec. 4 [Pretraining Datasets] for details.
The details of used datasets can be found in DATASET.md.
To pre-train the MaskPoint models on ShapeNet, simply run:
python main.py --config cfgs/pretrain_shapenet.yaml \
--exp_name pretrain_shapenet \
[--val_freq 10]
val_freq controls the frequence to evaluate the Transformer on ModelNet40 with LinearSVM.
Similarly, to pre-train the MaskPoint models on ScanNet-Medium, simply run:
# Pretrain 3x encoder model
python main.py --config cfgs/pretrain_scannet_enc3x.yaml \
--exp_name pretrain_scannet_enc3x \
[--val_freq 10]
# Pretrain 12x encoder model
python main.py --config cfgs/pretrain_scannet_enc12x.yaml \
--exp_name pretrain_scannet_enc12x \
[--val_freq 10]
We finetune our MaskPoint on 5 downstream tasks: Classfication on ModelNet40, Few-shot learning on ModelNet40, Transfer learning on ScanObjectNN, Part segmentation on ShapeNetPart, and Object detection on ScanNetV2.
To finetune a pre-trained MaskPoint model on ModelNet40, simply run:
python main.py
--config cfgs/finetune_modelnet.yaml \
--finetune_model \
--ckpts <path> \
--exp_name <name>
To evaluate a model finetuned on ModelNet40, simply run:
bash ./scripts/test.sh <GPU_IDS>\
--config cfgs/finetune_modelnet.yaml \
--ckpts <path> \
--exp_name <name>
We follow the few-shot setting in the previous work.
First, generate your own few-shot learning split or use the same split as us (see DATASET.md).
# generate few-shot learning split
cd datasets/
python generate_few_shot_data.py
# train and evaluate the MaskPoint
python main.py \
--config cfgs/fewshot_modelnet.yaml \
--finetune_model \
--ckpts <path> \
--exp_name <name> \
--way <int> \
--shot <int> \
--fold <int>
To finetune a pre-trained MaskPoint model on ScanObjectNN, simply run:
python main.py \
--config cfgs/finetune_scanobject_hardest.yaml \
--finetune_model \
--ckpts <path> \
--exp_name <name>
To evaluate a model on ScanObjectNN, simply run:
bash ./scripts/test_scan.sh <GPU_IDS>\
--config cfgs/finetune_scanobject_hardest.yaml \
--ckpts <path> \
--exp_name <name>
See MaskPoint -- 3DETR Finetuning for detailed instructions.
Coming soon..
@article{liu2022masked,
title={Masked Discrimination for Self-Supervised Learning on Point Clouds},
author={Liu, Haotian and Cai, Mu and Lee, Yong Jae},
journal={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2022}
}