forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
morphisms.tex
13134 lines (11603 loc) · 473 KB
/
morphisms.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Morphisms of Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we introduce some types of morphisms of schemes.
A basic reference is \cite{EGA}.
\section{Closed immersions}
\label{section-closed-immersions}
\noindent
In this section we elucidate some of the results obtained previously on closed
immersions of schemes. Recall that a morphism of schemes $i : Z \to X$
is defined to be a closed immersion if (a) $i$ induces a homeomorphism onto
a closed subset of $X$, (b) $i^\sharp : \mathcal{O}_X \to i_*\mathcal{O}_Z$
is surjective, and (c) the kernel of $i^\sharp$ is locally generated by
sections, see Schemes, Definitions \ref{schemes-definition-immersion}
and \ref{schemes-definition-closed-immersion-locally-ringed-spaces}. It turns
out that, given that $Z$ and $X$ are schemes, there are many different
ways of characterizing a closed immersion.
\begin{lemma}
\label{lemma-closed-immersion}
Let $i : Z \to X$ be a morphism of schemes.
The following are equivalent:
\begin{enumerate}
\item The morphism $i$ is a closed immersion.
\item For every affine open $\Spec(R) = U \subset X$,
there exists an ideal $I \subset R$ such that
$i^{-1}(U) = \Spec(R/I)$ as schemes over $U = \Spec(R)$.
\item There exists an affine open covering $X = \bigcup_{j \in J} U_j$,
$U_j = \Spec(R_j)$ and for every $j \in J$ there exists
an ideal $I_j \subset R_j$ such that
$i^{-1}(U_j) = \Spec(R_j/I_j)$ as schemes over $U_j = \Spec(R_j)$.
\item The morphism $i$ induces a homeomorphism of $Z$ with a closed subset
of $X$ and $i^\sharp : \mathcal{O}_X \to i_*\mathcal{O}_Z$ is surjective.
\item The morphism $i$ induces a homeomorphism of $Z$ with a closed subset
of $X$, the map $i^\sharp : \mathcal{O}_X \to i_*\mathcal{O}_Z$ is surjective,
and the kernel $\Ker(i^\sharp)\subset \mathcal{O}_X$ is a quasi-coherent
sheaf of ideals.
\item The morphism $i$ induces a homeomorphism of $Z$ with a closed subset
of $X$, the map $i^\sharp : \mathcal{O}_X \to i_*\mathcal{O}_Z$ is surjective,
and the kernel $\Ker(i^\sharp)\subset \mathcal{O}_X$ is a
sheaf of ideals which is locally generated by sections.
\end{enumerate}
\end{lemma}
\begin{proof}
Condition (6) is our definition of a closed immersion, see Schemes,
Definitions \ref{schemes-definition-closed-immersion-locally-ringed-spaces}
and \ref{schemes-definition-immersion}.
So (6) $\Leftrightarrow$ (1). We have (1) $\Rightarrow$ (2) by
Schemes, Lemma \ref{schemes-lemma-closed-subspace-scheme}.
Trivially (2) $\Rightarrow$ (3).
\medskip\noindent
Assume (3). Each of the morphisms
$\Spec(R_j/I_j) \to \Spec(R_j)$ is
a closed immersion, see
Schemes, Example \ref{schemes-example-closed-immersion-affines}.
Hence $i^{-1}(U_j) \to U_j$ is a homeomorphism onto its image
and $i^\sharp|_{U_j}$ is surjective. Hence $i$ is a homeomorphism
onto its image and $i^\sharp$ is surjective since this may be
checked locally. We conclude that (3) $\Rightarrow$ (4).
\medskip\noindent
The implication (4) $\Rightarrow$ (1) is
Schemes, Lemma \ref{schemes-lemma-characterize-closed-immersions}.
The implication (5) $\Rightarrow$ (6) is trivial.
And the implication (6) $\Rightarrow$ (5) follows
from Schemes, Lemma \ref{schemes-lemma-closed-subspace-scheme}.
\end{proof}
\begin{lemma}
\label{lemma-closed-immersion-ideals}
Let $X$ be a scheme. Let $i : Z \to X$ and $i' : Z' \to X$
be closed immersions and consider the ideal sheaves
$\mathcal{I} = \Ker(i^\sharp)$ and $\mathcal{I}' = \Ker((i')^\sharp)$
of $\mathcal{O}_X$.
\begin{enumerate}
\item The morphism $i : Z \to X$ factors as $Z \to Z' \to X$
for some $a : Z \to Z'$ if and only if $\mathcal{I}' \subset \mathcal{I}$.
If this happens, then $a$ is a closed immersion.
\item We have $Z \cong Z'$ over $X$ if and only if
$\mathcal{I} = \mathcal{I}'$.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows from our discussion of closed subspaces in
Schemes, Section \ref{schemes-section-closed-immersion} especially
Schemes, Lemmas
\ref{schemes-lemma-closed-immersion} and
\ref{schemes-lemma-characterize-closed-subspace}.
It also follows in a straightforward way from characterization
(3) in Lemma \ref{lemma-closed-immersion} above.
\end{proof}
\begin{lemma}
\label{lemma-closed-immersion-bijection-ideals}
Let $X$ be a scheme.
Let $\mathcal{I} \subset \mathcal{O}_X$ be a sheaf of ideals.
The following are equivalent:
\begin{enumerate}
\item $\mathcal{I}$ is locally generated by
sections as a sheaf of $\mathcal{O}_X$-modules,
\item $\mathcal{I}$ is quasi-coherent as
a sheaf of $\mathcal{O}_X$-modules, and
\item there exists a closed immersion $i : Z \to X$ of schemes whose
corresponding sheaf of ideals $\Ker(i^\sharp)$ is equal to $\mathcal{I}$.
\end{enumerate}
\end{lemma}
\begin{proof}
The equivalence of (1) and (2) is immediate from
Schemes, Lemma \ref{schemes-lemma-closed-subspace-scheme}.
If (1) holds, then there is a closed subspace $i : Z \to X$
with $\mathcal{I} = \Ker(i^\sharp)$ by
Schemes, Definition \ref{schemes-definition-closed-subspace}
and Example \ref{schemes-example-closed-subspace}.
By Schemes, Lemma \ref{schemes-lemma-closed-subspace-scheme}
this is a closed immersion of schemes and (3) holds.
Conversely, if (3) holds, then (2) holds by
Schemes, Lemma \ref{schemes-lemma-closed-subspace-scheme}
(which applies because a closed immersion of schemes is a fortiori a
closed immersion of locally ringed spaces).
\end{proof}
\begin{lemma}
\label{lemma-base-change-closed-immersion}
The base change of a closed immersion is a closed immersion.
\end{lemma}
\begin{proof}
See Schemes, Lemma \ref{schemes-lemma-base-change-immersion}.
\end{proof}
\begin{lemma}
\label{lemma-composition-closed-immersion}
A composition of closed immersions is a closed immersion.
\end{lemma}
\begin{proof}
We have seen this in
Schemes, Lemma \ref{schemes-lemma-composition-immersion},
but here is another
proof. Namely, it follows from the characterization (3) of closed immersions
in Lemma \ref{lemma-closed-immersion}. Since if $I \subset R$
is an ideal, and $\overline{J} \subset R/I$ is an ideal, then
$\overline{J} = J/I$ for some ideal $J \subset R$ which contains
$I$ and $(R/I)/\overline{J} = R/J$.
\end{proof}
\begin{lemma}
\label{lemma-closed-immersion-quasi-compact}
A closed immersion is quasi-compact.
\end{lemma}
\begin{proof}
This lemma is a duplicate of
Schemes, Lemma \ref{schemes-lemma-closed-immersion-quasi-compact}.
\end{proof}
\begin{lemma}
\label{lemma-closed-immersion-separated}
A closed immersion is separated.
\end{lemma}
\begin{proof}
This lemma is a special case of
Schemes, Lemma \ref{schemes-lemma-immersions-monomorphisms}.
\end{proof}
\section{Immersions}
\label{section-immersions}
\noindent
In this section we collect some facts on immersions.
\begin{lemma}
\label{lemma-immersion-permanence}
Let $Z \to Y \to X$ be morphisms of schemes.
\begin{enumerate}
\item If $Z \to X$ is an immersion, then $Z \to Y$ is an immersion.
\item If $Z \to X$ is a quasi-compact immersion and $Z \to Y$ is
quasi-separated, then $Z \to Y$ is a quasi-compact immersion.
\item If $Z \to X$ is a closed immersion and $Y \to X$ is separated,
then $Z \to Y$ is a closed immersion.
\end{enumerate}
\end{lemma}
\begin{proof}
In each case the proof is to contemplate the commutative diagram
$$
\xymatrix{
Z \ar[r] \ar[rd] & Y \times_X Z \ar[r] \ar[d] & Z \ar[d] \\
& Y \ar[r] & X
}
$$
where the composition of the top horizontal arrows is the identity.
Let us prove (1). The first horizontal arrow is a section of
$Y \times_X Z \to Z$, whence an immersion by
Schemes, Lemma \ref{schemes-lemma-section-immersion}.
The arrow $Y \times_X Z \to Y$ is a base change of $Z \to X$ hence
an immersion (Schemes, Lemma \ref{schemes-lemma-base-change-immersion}).
Finally, a composition of immersions is an immersion
(Schemes, Lemma \ref{schemes-lemma-composition-immersion}). This proves (1).
The other two results are proved in exactly the same manner.
\end{proof}
\begin{lemma}
\label{lemma-factor-quasi-compact-immersion}
Let $h : Z \to X$ be an immersion.
If $h$ is quasi-compact, then we can factor
$h = i \circ j$ with $j : Z \to \overline{Z}$ an
open immersion and $i : \overline{Z} \to X$ a closed immersion.
\end{lemma}
\begin{proof}
Note that $h$ is quasi-compact and quasi-separated (see
Schemes, Lemma \ref{schemes-lemma-immersions-monomorphisms}).
Hence $h_*\mathcal{O}_Z$ is a quasi-coherent sheaf of $\mathcal{O}_X$-modules
by Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}.
This implies that
$\mathcal{I} = \Ker(\mathcal{O}_X \to h_*\mathcal{O}_Z)$
is a quasi-coherent sheaf of ideals, see
Schemes, Section \ref{schemes-section-quasi-coherent}.
Let $\overline{Z} \subset X$ be the closed subscheme corresponding
to $\mathcal{I}$, see Lemma \ref{lemma-closed-immersion-bijection-ideals}.
By Schemes, Lemma \ref{schemes-lemma-characterize-closed-subspace}
the morphism $h$ factors as
$h = i \circ j$ where $i : \overline{Z} \to X$ is the inclusion morphism.
To see that $j$ is an open immersion, choose an open subscheme
$U \subset X$ such that $h$ induces a closed immersion of $Z$
into $U$. Then it is clear that $\mathcal{I}|_U$ is the
sheaf of ideals corresponding to the closed immersion $Z \to U$.
Hence we see that $Z = \overline{Z} \cap U$.
\end{proof}
\begin{lemma}
\label{lemma-factor-reduced-immersion}
Let $h : Z \to X$ be an immersion.
If $Z$ is reduced, then we can factor
$h = i \circ j$ with $j : Z \to \overline{Z}$ an
open immersion and $i : \overline{Z} \to X$ a closed immersion.
\end{lemma}
\begin{proof}
Let $\overline{Z} \subset X$ be the closure of $h(Z)$ with the reduced
induced closed subscheme structure, see
Schemes, Definition \ref{schemes-definition-reduced-induced-scheme}.
By Schemes, Lemma \ref{schemes-lemma-map-into-reduction}
the morphism $h$ factors as
$h = i \circ j$ with $i : \overline{Z} \to X$ the inclusion morphism
and $j : Z \to \overline{Z}$. From the definition of an immersion we
see there exists an open subscheme $U \subset X$ such that
$h$ factors through a closed immersion into $U$. Hence
$\overline{Z} \cap U$ and $h(Z)$ are reduced closed subschemes
of $U$ with the same underlying closed set. Hence by the uniqueness
in Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme}
we see that $h(Z) \cong \overline{Z} \cap U$.
So $j$ induces an isomorphism of $Z$ with $\overline{Z} \cap U$.
In other words $j$ is an open immersion.
\end{proof}
\begin{example}
\label{example-thibaut}
Here is an example of an immersion which is not a composition of an
open immersion followed by a closed immersion.
Let $k$ be a field.
Let $X = \Spec(k[x_1, x_2, x_3, \ldots])$.
Let $U = \bigcup_{n = 1}^{\infty} D(x_n)$.
Then $U \to X$ is an open immersion.
Consider the ideals
$$
I_n =
(x_1^n, x_2^n, \ldots, x_{n - 1}^n, x_n - 1, x_{n + 1}, x_{n + 2}, \ldots)
\subset
k[x_1, x_2, x_3, \ldots][1/x_n].
$$
Note that $I_n k[x_1, x_2, x_3, \ldots][1/x_nx_m] = (1)$
for any $m \not = n$. Hence the quasi-coherent ideals
$\widetilde I_n$ on $D(x_n)$ agree on $D(x_nx_m)$, namely
$\widetilde I_n|_{D(x_nx_m)} = \mathcal{O}_{D(x_n x_m)}$ if
$n \not = m$. Hence these ideals glue to a quasi-coherent sheaf of ideals
$\mathcal{I} \subset \mathcal{O}_U$.
Let $Z \subset U$ be the closed subscheme corresponding to
$\mathcal{I}$. Thus $Z \to X$ is an immersion.
\medskip\noindent
We claim that we cannot factor $Z \to X$ as
$Z \to \overline{Z} \to X$, where $\overline{Z} \to X$ is closed
and $Z \to \overline{Z}$ is open. Namely, $\overline{Z}$ would
have to be defined by an ideal $I \subset k[x_1, x_2, x_3, \ldots]$
such that $I_n = I k[x_1, x_2, x_3, \ldots][1/x_n]$.
But the only element $f \in k[x_1, x_2, x_3, \ldots]$
which ends up in all $I_n$ is $0$! Hence $I$ does not exist.
\end{example}
\section{Closed immersions and quasi-coherent sheaves}
\label{section-closed-immersions-quasi-coherent}
\noindent
The following lemma finally does for quasi-coherent sheaves on schemes
what Modules, Lemma \ref{modules-lemma-i-star-exact} does for abelian sheaves.
See also the discussion in
Modules, Section \ref{modules-section-closed-immersion}.
\begin{lemma}
\label{lemma-i-star-equivalence}
Let $i : Z \to X$ be a closed immersion of schemes. Let
$\mathcal{I} \subset \mathcal{O}_X$ be the quasi-coherent sheaf of ideals
cutting out $Z$. The functor
$$
i_* :
\QCoh(\mathcal{O}_Z)
\longrightarrow
\QCoh(\mathcal{O}_X)
$$
is exact, fully faithful, with essential image those quasi-coherent
$\mathcal{O}_X$-modules $\mathcal{G}$ such that $\mathcal{I}\mathcal{G} = 0$.
\end{lemma}
\begin{proof}
A closed immersion is quasi-compact and separated, see
Lemmas \ref{lemma-closed-immersion-quasi-compact} and
\ref{lemma-closed-immersion-separated}. Hence
Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}
applies and the pushforward of a quasi-coherent
sheaf on $Z$ is indeed a quasi-coherent sheaf on $X$.
\medskip\noindent
By Modules, Lemma \ref{modules-lemma-i-star-equivalence}
the functor $i_*$ is fully faithful.
\medskip\noindent
Now we turn to the description of the essential image of the
functor $i_*$. It is clear that $\mathcal{I}(i_*\mathcal{F}) = 0$
for any quasi-coherent $\mathcal{O}_Z$-module, for example
by our local description above. Next, suppose that $\mathcal{G}$
is any quasi-coherent $\mathcal{O}_X$-module such that
$\mathcal{I}\mathcal{G} = 0$. It suffices to show that the canonical map
$$
\mathcal{G} \longrightarrow i_* i^*\mathcal{G}
$$
is an isomorphism. By exactly the same arguments as above we see that
it suffices to prove the following algebraic statement: Given a ring
$R$, an ideal $I$ and an $R$-module $N$ such that $IN = 0$ the canonical map
$$
N \longrightarrow N \otimes_R R/I,\quad
n \longmapsto n \otimes 1
$$
is an isomorphism of $R$-modules. Proof of this easy algebra fact is omitted.
\end{proof}
\noindent
Let $i : Z \to X$ be a closed immersion. Because of the lemma above we often,
by abuse of notation, denote $\mathcal{F}$ the sheaf $i_*\mathcal{F}$ on $X$.
\begin{lemma}
\label{lemma-largest-quasi-coherent-subsheaf}
Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_X$-module. Let $\mathcal{G} \subset \mathcal{F}$
be a $\mathcal{O}_X$-submodule. There exists a unique quasi-coherent
$\mathcal{O}_X$-submodule $\mathcal{G}' \subset \mathcal{G}$
with the following property: For every quasi-coherent $\mathcal{O}_X$-module
$\mathcal{H}$ the map
$$
\Hom_{\mathcal{O}_X}(\mathcal{H}, \mathcal{G}')
\longrightarrow
\Hom_{\mathcal{O}_X}(\mathcal{H}, \mathcal{G})
$$
is bijective. In particular $\mathcal{G}'$ is the largest quasi-coherent
$\mathcal{O}_X$-submodule of $\mathcal{F}$ contained in $\mathcal{G}$.
\end{lemma}
\begin{proof}
Let $\mathcal{G}_a$, $a \in A$ be the set of quasi-coherent
$\mathcal{O}_X$-submodules contained in $\mathcal{G}$.
Then the image $\mathcal{G}'$ of
$$
\bigoplus\nolimits_{a \in A} \mathcal{G}_a \longrightarrow \mathcal{F}
$$
is quasi-coherent as the image of a map of quasi-coherent sheaves
on $X$ is quasi-coherent and since a direct sum of quasi-coherent sheaves
is quasi-coherent, see
Schemes, Section \ref{schemes-section-quasi-coherent}.
The module $\mathcal{G}'$ is contained in $\mathcal{G}$. Hence this is the
largest quasi-coherent $\mathcal{O}_X$-module contained in $\mathcal{G}$.
\medskip\noindent
To prove the formula, let $\mathcal{H}$ be a quasi-coherent
$\mathcal{O}_X$-module and let $\alpha : \mathcal{H} \to \mathcal{G}$
be an $\mathcal{O}_X$-module map. The image of the composition
$\mathcal{H} \to \mathcal{G} \to \mathcal{F}$ is quasi-coherent
as the image of a map of quasi-coherent sheaves. Hence it is contained
in $\mathcal{G}'$. Hence $\alpha$ factors through $\mathcal{G}'$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-i-upper-shriek}
Let $i : Z \to X$ be a closed immersion of schemes.
There is a functor\footnote{This is likely nonstandard notation.}
$i^! : \QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_Z)$
which is a right adjoint to $i_*$. (Compare
Modules, Lemma \ref{modules-lemma-i-star-right-adjoint}.)
\end{lemma}
\begin{proof}
Given quasi-coherent $\mathcal{O}_X$-module $\mathcal{G}$ we consider
the subsheaf $\mathcal{H}_Z(\mathcal{G})$ of $\mathcal{G}$ of local sections
annihilated by $\mathcal{I}$. By
Lemma \ref{lemma-largest-quasi-coherent-subsheaf}
there is a canonical largest quasi-coherent $\mathcal{O}_X$-submodule
$\mathcal{H}_Z(\mathcal{G})'$. By construction we have
$$
\Hom_{\mathcal{O}_X}(i_*\mathcal{F}, \mathcal{H}_Z(\mathcal{G})')
=
\Hom_{\mathcal{O}_X}(i_*\mathcal{F}, \mathcal{G})
$$
for any quasi-coherent $\mathcal{O}_Z$-module $\mathcal{F}$.
Hence we can set $i^!\mathcal{G} = i^*(\mathcal{H}_Z(\mathcal{G})')$.
Details omitted.
\end{proof}
\noindent
Using the $1$-to-$1$ corresponding between quasi-coherent sheaves
of ideals and closed subschemes (see
Lemma \ref{lemma-closed-immersion-bijection-ideals})
we can define scheme theoretic intersections and unions
of closed subschemes.
\begin{definition}
\label{definition-scheme-theoretic-intersection-union}
Let $X$ be a scheme. Let $Z, Y \subset X$ be closed subschemes
corresponding to quasi-coherent ideal sheaves
$\mathcal{I}, \mathcal{J} \subset \mathcal{O}_X$.
The {\it scheme theoretic intersection} of $Z$ and $Y$
is the closed subscheme of $X$ cut out by $\mathcal{I} + \mathcal{J}$.
Then {\it scheme theoretic union} of $Z$ and $Y$
is the closed subscheme of $X$ cut out by
$\mathcal{I} \cap \mathcal{J}$.
\end{definition}
\begin{lemma}
\label{lemma-scheme-theoretic-intersection}
Let $X$ be a scheme. Let $Z, Y \subset X$ be closed subschemes.
Let $Z \cap Y$ be the scheme theoretic intersection of $Z$ and $Y$.
Then $Z \cap Y \to Z$ and $Z \cap Y \to Y$ are closed immersions
and
$$
\xymatrix{
Z \cap Y \ar[r] \ar[d] & Z \ar[d] \\
Y \ar[r] & X
}
$$
is a cartersian diagram of schemes, i.e., $Z \cap Y = Z \times_X Y$.
\end{lemma}
\begin{proof}
The morphisms $Z \cap Y \to Z$ and $Z \cap Y \to Y$ are closed immersions
by Lemma \ref{lemma-closed-immersion-ideals}.
Let $U = \Spec(A)$ be an affine open of $X$ and let $Z \cap U$ and $Y \cap U$
correspond to the ideals $I \subset A$ and $J \subset A$. Then
$Z \cap Y \cap U$ corresponds to $I + J \subset A$. Since
$A/I \otimes_A A/J = A/(I + J)$ we see that the diagram is
cartesian by our description of fibre products of schemes
in Schemes, Section \ref{schemes-section-fibre-products}.
\end{proof}
\begin{lemma}
\label{lemma-scheme-theoretic-union}
Let $S$ be a scheme. Let $X, Y \subset S$ be closed subschemes.
Let $X \cup Y$ be the scheme theoretic union of $X$ and $Y$.
Let $X \cap Y$ be the scheme theoretic intersection of $X$ and $Y$.
Then $X \to X \cup Y$ and $Y \to X \cup Y$ are closed immersions, there is a
short exact sequence
$$
0 \to \mathcal{O}_{X \cup Y} \to \mathcal{O}_X \times \mathcal{O}_Y
\to \mathcal{O}_{X \cap Y} \to 0
$$
of $\mathcal{O}_S$-modules, and the diagram
$$
\xymatrix{
X \cap Y \ar[r] \ar[d] & X \ar[d] \\
Y \ar[r] & X \cup Y
}
$$
is cocartersian in the category of schemes schemes, i.e.,
$X \cup Y = X \amalg_{X \cap Y} Y$.
\end{lemma}
\begin{proof}
The morphisms $X \to X \cup Y$ and $Y \to X \cup Y$ are closed immersions
by Lemma \ref{lemma-closed-immersion-ideals}. In the short exact sequence
we use the equivalence of Lemma \ref{lemma-i-star-equivalence} to think of
quasi-coherent modules on closed subschemes of $S$ as quasi-coherent modules
on $S$. For the first map in the sequence we use the canonical maps
$\mathcal{O}_{X \cup Y} \to \mathcal{O}_X$ and
$\mathcal{O}_{X \cup Y} \to \mathcal{O}_Y$
and for the second map we use the canonical map
$\mathcal{O}_X \to \mathcal{O}_{X \cap Y}$ and
the negative of the canonical map
$\mathcal{O}_Y \to \mathcal{O}_{X \cap Y}$. Then to check
exactness we may work affine locally.
Let $U = \Spec(A)$ be an affine open of $S$ and let $X \cap U$ and $Y \cap U$
correspond to the ideals $I \subset A$ and $J \subset A$. Then
$(X \cup Y) \cap U$ corresponds to $I \cap J \subset A$
and $X \cap Y \cap U$ corresponds to $I + J \subset A$.
Thus exactness follows from the exactness of
$$
0 \to A/I \cap J \to A/I \times A/J \to A/(I + J) \to 0
$$
To show the diagram is cocartesian, suppose we are given a scheme $T$
and morphisms of schemes $f : X \to T$, $g : Y \to T$ agreeing
as morphisms $X \cap Y \to T$. Goal: Show there exists a unique
morphism $h : X \cup Y \to T$ agreeing with $f$ and $g$.
To construct $h$ we may work affine locally on $X \cup Y$, see
Schemes, Section \ref{schemes-section-glueing-schemes}.
If $s \in X$, $s \not \in Y$, then $X \to X \cup Y$ is
an isomorphism in a neighbourhood of $s$ and it is clear
how to construct $h$. Similarly for $s \in Y$, $s \not \in X$.
For $s \in X \cap Y$ we can pick an affine open
$V = \Spec(B) \subset T$ containing $f(s) = g(s)$.
Then we can choose an affine open $U = \Spec(A) \subset S$
containing $s$ such that $f(X \cap U)$ and $g(Y \cap U)$
are contained in $V$. The morphisms $f|_{X \cap U}$
and $g|_{Y \cap V}$ into $V$ correspond to ring maps
$$
B \to A/I
\quad\text{and}\quad
B \to A/J
$$
which agree as maps into $A/(I + J)$. By the short exact sequence
displayed above there is a unique lift of these ring homomorphism
to a ring map $B \to A/I \cap J$ as desired.
\end{proof}
\section{Supports of modules}
\label{section-support}
\noindent
In this section we collect some elementary results on supports of
quasi-coherent modules on schemes.
Recall that the support of a sheaf of modules has been defined in
Modules, Section \ref{modules-section-support}.
On the other hand, the support of a module was defined in
Algebra, Section \ref{algebra-section-support}.
These match.
\begin{lemma}
\label{lemma-support-affine-open}
Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
Let $\Spec(A) = U \subset X$ be an affine open, and set
$M = \Gamma(U, \mathcal{F})$.
Let $x \in U$, and let $\mathfrak p \subset A$ be the corresponding prime.
The following are equivalent
\begin{enumerate}
\item $\mathfrak p$ is in the support of $M$, and
\item $x$ is in the support of $\mathcal{F}$.
\end{enumerate}
\end{lemma}
\begin{proof}
This follows from the equality $\mathcal{F}_x = M_{\mathfrak p}$, see
Schemes, Lemma \ref{schemes-lemma-spec-sheaves}
and the definitions.
\end{proof}
\begin{lemma}
\label{lemma-support-closed-specialization}
Let $X$ be a scheme.
Let $\mathcal{F}$ be a quasi-coherent sheaf on $X$.
The support of $\mathcal{F}$ is closed under specialization.
\end{lemma}
\begin{proof}
If $x' \leadsto x$ is a specialization and $\mathcal{F}_x = 0$
then $\mathcal{F}_{x'}$ is zero, as $\mathcal{F}_{x'}$ is a localization
of the module $\mathcal{F}_x$. Hence the complement of
$\text{Supp}(\mathcal{F})$ is closed under generalization.
\end{proof}
\noindent
For finite type quasi-coherent modules the support is closed,
can be checked on fibres, and commutes with base change.
\begin{lemma}
\label{lemma-support-finite-type}
Let $\mathcal{F}$ be a finite type quasi-coherent module
on a scheme $X$. Then
\begin{enumerate}
\item The support of $\mathcal{F}$ is closed.
\item For $x \in X$ we have
$$
x \in \text{Supp}(\mathcal{F})
\Leftrightarrow
\mathcal{F}_x \not = 0
\Leftrightarrow
\mathcal{F}_x \otimes_{\mathcal{O}_{X, x}} \kappa(x) \not = 0.
$$
\item For any morphism of schemes $f : Y \to X$ the pullback
$f^*\mathcal{F}$ is of finite type as well and we have
$\text{Supp}(f^*\mathcal{F}) = f^{-1}(\text{Supp}(\mathcal{F}))$.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) is a reformulation of
Modules, Lemma \ref{modules-lemma-support-finite-type-closed}.
You can also combine
Lemma \ref{lemma-support-affine-open},
Properties, Lemma \ref{properties-lemma-finite-type-module},
and
Algebra, Lemma \ref{algebra-lemma-support-closed}
to see this. The first equivalence in (2) is the definition
of support, and the second equivalence follows from
Nakayama's lemma, see
Algebra, Lemma \ref{algebra-lemma-NAK}.
Let $f : Y \to X$ be a morphism of schemes. Note that
$f^*\mathcal{F}$ is of finite type by
Modules, Lemma \ref{modules-lemma-pullback-finite-type}.
For the final assertion, let $y \in Y$ with image $x \in X$.
Recall that
$$
(f^*\mathcal{F})_y =
\mathcal{F}_x \otimes_{\mathcal{O}_{X, x}} \mathcal{O}_{Y, y},
$$
see
Sheaves, Lemma \ref{sheaves-lemma-stalk-pullback-modules}.
Hence $(f^*\mathcal{F})_y \otimes \kappa(y)$ is nonzero
if and only if $\mathcal{F}_x \otimes \kappa(x)$ is nonzero.
By (2) this implies $x \in \text{Supp}(\mathcal{F})$ if and only
if $y \in \text{Supp}(f^*\mathcal{F})$, which is the content of
assertion (3).
\end{proof}
\begin{lemma}
\label{lemma-scheme-theoretic-support}
Let $\mathcal{F}$ be a finite type quasi-coherent module
on a scheme $X$. There exists a smallest closed subscheme
$i : Z \to X$ such that there exists a quasi-coherent
$\mathcal{O}_Z$-module $\mathcal{G}$ with
$i_*\mathcal{G} \cong \mathcal{F}$. Moreover:
\begin{enumerate}
\item If $\Spec(A) \subset X$ is any affine open, and
$\mathcal{F}|_{\Spec(A)} = \widetilde{M}$ then
$Z \cap \Spec(A) = \Spec(A/I)$ where $I = \text{Ann}_A(M)$.
\item The quasi-coherent sheaf $\mathcal{G}$ is unique up to unique
isomorphism.
\item The quasi-coherent sheaf $\mathcal{G}$ is of finite type.
\item The support of $\mathcal{G}$ and of $\mathcal{F}$ is $Z$.
\end{enumerate}
\end{lemma}
\begin{proof}
Suppose that $i' : Z' \to X$ is a closed subscheme which satisfies the
description on open affines from the lemma. Then by
Lemma \ref{lemma-i-star-equivalence}
we see that $\mathcal{F} \cong i'_*\mathcal{G}'$ for some unique
quasi-coherent sheaf $\mathcal{G}'$ on $Z'$. Furthermore, it is clear
that $Z'$ is the smallest closed subscheme with this property (by the
same lemma). Finally, using
Properties, Lemma \ref{properties-lemma-finite-type-module}
and
Algebra, Lemma \ref{algebra-lemma-finite-over-subring}
it follows that $\mathcal{G}'$ is of finite type. We have
$\text{Supp}(\mathcal{G}') = Z$ by
Algebra, Lemma \ref{algebra-lemma-support-closed}.
Hence, in order to prove the lemma it suffices to show that
the characterization in (1) actually does define a closed subscheme.
And, in order to do this it suffices to prove that the given rule
produces a quasi-coherent sheaf of ideals, see
Lemma \ref{lemma-closed-immersion-bijection-ideals}.
This comes down to the following algebra fact: If $A$ is a ring, $f \in A$,
and $M$ is a finite $A$-module, then
$\text{Ann}_A(M)_f = \text{Ann}_{A_f}(M_f)$.
We omit the proof.
\end{proof}
\begin{definition}
\label{definition-scheme-theoretic-support}
Let $X$ be a scheme. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_X$-module of finite type. The {\it scheme theoretic support
of $\mathcal{F}$} is the closed subscheme $Z \subset X$ constructed in
Lemma \ref{lemma-scheme-theoretic-support}.
\end{definition}
\noindent
In this situation we often think of $\mathcal{F}$ as a quasi-coherent
sheaf of finite type on $Z$ (via the equivalence of categories of
Lemma \ref{lemma-i-star-equivalence}).
\section{Scheme theoretic image}
\label{section-scheme-theoretic-image}
\noindent
Caution: Some of the material in this section is ultra-general and
behaves differently from what you might expect.
\begin{lemma}
\label{lemma-scheme-theoretic-image}
Let $f : X \to Y$ be a morphism of schemes. There exists a closed
subscheme $Z \subset Y$ such that $f$ factors through $Z$ and such
that for any other closed subscheme $Z' \subset Y$ such that $f$
factors through $Z'$ we have $Z \subset Z'$.
\end{lemma}
\begin{proof}
Let $\mathcal{I} = \Ker(\mathcal{O}_Y \to f_*\mathcal{O}_X)$.
If $\mathcal{I}$ is quasi-coherent then we just take $Z$ to be the
closed subscheme determined by $\mathcal{I}$, see
Lemma \ref{lemma-closed-immersion-bijection-ideals}. This works by
Schemes, Lemma \ref{schemes-lemma-characterize-closed-subspace}.
In general the same lemma requires us to show that there exists
a largest quasi-coherent sheaf of ideals $\mathcal{I}'$ contained in
$\mathcal{I}$.
This follows from Lemma \ref{lemma-largest-quasi-coherent-subsheaf}.
\end{proof}
\begin{definition}
\label{definition-scheme-theoretic-image}
Let $f : X \to Y$ be a morphism of schemes. The {\it scheme theoretic image}
of $f$ is the smallest closed subscheme $Z \subset Y$ through which $f$
factors, see Lemma \ref{lemma-scheme-theoretic-image} above.
\end{definition}
\noindent
We often just denote $f : X \to Z$ the factorization of $f$.
If the morphism $f$ is not quasi-compact, then (in general) the
construction of the scheme theoretic image does not commute with
restriction to open subschemes to $Y$. Namely, if $f$ is the
immersion $Z \to X$ of Example \ref{example-thibaut} above then
the scheme theoretic image of $Z \to X$ is $X$. But clearly the
scheme theoretic image of $Z = Z \cap U \to U$ is just $Z$.
\begin{lemma}
\label{lemma-quasi-compact-scheme-theoretic-image}
Let $f : X \to Y$ be a morphism of schemes.
Let $Z \subset Y$ be the scheme theoretic image of $f$.
If $f$ is quasi-compact then
\begin{enumerate}
\item the sheaf of ideals
$\mathcal{I} = \Ker(\mathcal{O}_Y \to f_*\mathcal{O}_X)$
is quasi-coherent,
\item the scheme theoretic image $Z$ is the closed subscheme
determined by $\mathcal{I}$,
\item for any open $U \subset Y$ the scheme theoretic image of
$f|_{f^{-1}(U)} : f^{-1}(U) \to U$ is equal to $Z \cap U$, and
\item the image $f(X) \subset Z$ is a dense subset of $Z$, in other
words the morphism $X \to Z$ is dominant
(see Definition \ref{definition-dominant}).
\end{enumerate}
\end{lemma}
\begin{proof}
Part (4) follows from part (3). To show (3) it suffices
to prove (1) since the formation of $\mathcal{I}$ commutes with restriction to
open subschemes of $Y$. And if (1) holds then in the proof of
Lemma \ref{lemma-scheme-theoretic-image}
we showed (2). Thus it suffices to prove that $\mathcal{I}$ is quasi-coherent.
Since the property of being quasi-coherent is
local we may assume $Y$ is affine. As $f$ is quasi-compact,
we can find a finite affine open covering
$X = \bigcup_{i = 1, \ldots, n} U_i$. Denote $f'$ the composition
$$
X' = \coprod U_i \longrightarrow X \longrightarrow Y.
$$
Then $f_*\mathcal{O}_X$ is a subsheaf of $f'_*\mathcal{O}_{X'}$,
and hence $\mathcal{I} = \Ker(\mathcal{O}_Y \to \mathcal{O}_{X'})$.
By Schemes, Lemma \ref{schemes-lemma-push-forward-quasi-coherent}
the sheaf $f'_*\mathcal{O}_{X'}$ is quasi-coherent on $Y$. Hence we win.
\end{proof}
\begin{example}
\label{example-scheme-theoretic-image}
If $A \to B$ is a ring map with kernel $I$, then the scheme theoretic image
of $\Spec(B) \to \Spec(A)$ is the closed subscheme
$\Spec(A/I)$ of $\Spec(A)$. This follows from
Lemma \ref{lemma-quasi-compact-scheme-theoretic-image}.
\end{example}
\noindent
If the morphism is quasi-compact, then the scheme theoretic image only
adds points which are specializations of points in the image.
\begin{lemma}
\label{lemma-reach-points-scheme-theoretic-image}
Let $f : X \to Y$ be a quasi-compact morphism.
Let $Z$ be the scheme theoretic image of $f$.
Let $z \in Z$. There exists a valuation ring $A$ with
fraction field $K$ and a commutative diagram
$$
\xymatrix{
\Spec(K) \ar[rr] \ar[d] & & X \ar[d] \ar[ld] \\
\Spec(A) \ar[r] & Z \ar[r] & Y
}
$$
such that the closed point of $\Spec(A)$ maps to $z$. In particular
any point of $Z$ is the specialization of a point of $f(X)$.
\end{lemma}
\begin{proof}
Let $z \in \Spec(R) = V \subset Y$ be an affine open
neighbourhood of $z$. By
Lemma \ref{lemma-quasi-compact-scheme-theoretic-image}
the intersection $Z \cap V$ is the scheme theoretic image of
$f^{-1}(V) \to V$. Hence we may replace $Y$ by $V$
and assume $Y = \Spec(R)$ is affine.
In this case $X$ is quasi-compact as $f$ is quasi-compact.
Say $X = U_1 \cup \ldots \cup U_n$
is a finite affine open covering. Write $U_i = \Spec(A_i)$.
Let $I = \Ker(R \to A_1 \times \ldots \times A_n)$.
By Lemma \ref{lemma-quasi-compact-scheme-theoretic-image}
again we see that $Z$ corresponds to the closed subscheme
$\Spec(R/I)$ of $Y$. If $\mathfrak p \subset R$ is
the prime corresponding to $z$, then we see that
$I_{\mathfrak p} \subset R_{\mathfrak p}$ is not an
equality. Hence (as localization is exact, see
Algebra, Proposition \ref{algebra-proposition-localization-exact})
we see that
$R_{\mathfrak p} \to
(A_1)_{\mathfrak p} \times \ldots \times (A_1)_{\mathfrak p}$
is not zero. Hence one of the rings $(A_i)_{\mathfrak p}$ is not zero.
Hence there exists an $i$ and a prime $\mathfrak q_i \subset A_i$
lying over a prime $\mathfrak p_i \subset \mathfrak p$.
By Algebra, Lemma \ref{algebra-lemma-dominate} we can choose a valuation ring
$A \subset K = f.f.(A_i/\mathfrak q_i)$ dominating
the local ring
$R_{\mathfrak p}/\mathfrak p_1R_{\mathfrak p} \subset f.f.(A_i/\mathfrak q_i)$.
This gives the desired diagram. Some details omitted.
\end{proof}
\begin{lemma}
\label{lemma-factor-factor}
Let $f_1 : X \to Y_1$ and $Y_1 \to Y_2$ be morphisms of schemes.
Let $f_2 : X \to Y_2$ be the composition. Let $Z_i \subset Y_i$, $i = 1, 2$ be
the scheme theoretic image of $f_i$. Then the morphism
$Y_1 \to Y_2$ induces a morphism $Z_1 \to Z_2$ and a
commutative diagram
$$
\xymatrix{
X \ar[r] \ar[rd] & Z_1 \ar[d] \ar[r] & Y_1 \ar[d] \\
& Z_2 \ar[r] & Y_2
}
$$
\end{lemma}
\begin{proof}
See Schemes, Lemma \ref{schemes-lemma-characterize-closed-subspace}.
\end{proof}
\begin{lemma}
\label{lemma-scheme-theoretic-image-reduced}
Let $f : X \to Y$ be a morphism of schemes.
If $X$ is reduced, then the scheme theoretic image of $f$ is
the reduced induced scheme structure on $\overline{f(X)}$.
\end{lemma}
\begin{proof}
This is true because the reduced induced scheme structure on $\overline{f(X)}$
is clearly the smallest closed subscheme of $Y$ through which $f$ factors,
see
Schemes, Lemma \ref{schemes-lemma-map-into-reduction}.
\end{proof}
\section{Scheme theoretic closure and density}
\label{section-scheme-theoretic-closure}
\noindent
We take the following definition from \cite[IV, Definition 11.10.2]{EGA}.
\begin{definition}
\label{definition-scheme-theoretically-dense}
Let $X$ be a scheme. Let $U \subset X$ be an open subscheme.
\begin{enumerate}
\item The scheme theoretic image of the morphism $U \to X$
is called the {\it scheme theoretic closure of $U$ in $X$}.
\item We say $U$ is {\it scheme theoretically dense in $X$}
if for every open $V \subset X$ the scheme theoretic closure
of $U \cap V$ in $V$ is equal to $V$.
\end{enumerate}
\end{definition}
\noindent
With this definition it is
{\bf not} the case that $U$ is scheme theoretically dense in $X$ if and
only if the scheme theoretic closure of $U$ is $X$, see
Example \ref{example-scheme-theretically-dense-not-dense}.
This is somewhat inelegant; but see
Lemmas \ref{lemma-scheme-theoretically-dense-quasi-compact} and
\ref{lemma-reduced-scheme-theoretically-dense}
below. On the other hand, with this definition $U$ is scheme theoretically
dense in $X$ if and only if for every $V \subset X$ open the ring map
$\mathcal{O}_X(V) \to \mathcal{O}_X(U \cap V)$ is injective, see
Lemma \ref{lemma-characterize-scheme-theoretically-dense}
below. In particular we see that scheme theoretically dense implies dense
which is pleasing.
\begin{example}
\label{example-scheme-theretically-dense-not-dense}
Here is an example where scheme theoretic closure being $X$ does not
imply dense for the underlying topological spaces.
Let $k$ be a field.
Set $A = k[x, z_1, z_2, \ldots]/(x^n z_n)$
Set $I = (z_1, z_2, \ldots) \subset A$.
Consider the affine scheme $X = \Spec(A)$ and the
open subscheme $U = X \setminus V(I)$.
Since $A \to \prod_n A_{z_n}$ is injective we see that the scheme theoretic
closure of $U$ is $X$. Consider the morphism
$X \to \Spec(k[x])$. This morphism is surjective
(set all $z_n = 0$ to see this). But the restriction
of this morphism to $U$ is not surjective because it maps
to the point $x = 0$. Hence $U$ cannot be topologically dense
in $X$.
\end{example}
\begin{lemma}
\label{lemma-scheme-theoretically-dense-quasi-compact}
Let $X$ be a scheme.
Let $U \subset X$ be an open subscheme.
If the inclusion morphism $U \to X$ is quasi-compact, then $U$
is scheme theoretically dense in $X$ if and only if the scheme theoretic
closure of $U$ in $X$ is $X$.
\end{lemma}
\begin{proof}