forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
sites-modules.tex
7439 lines (6709 loc) · 255 KB
/
sites-modules.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Modules on Sites}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this document we work out basic notions of sheaves of modules on
ringed topoi or ringed sites. We first work out some basic facts on
abelian sheaves. After this we introduce ringed sites and ringed topoi.
We work through some of the very basic notions on (pre)sheaves of
$\mathcal{O}$-modules, analogous to the material on (pre)sheaves of
$\mathcal{O}$-modules in the chapter on sheaves on spaces.
Having done this, we duplicate much of the discussion in the chapter on
sheaves of modules (see Modules, Section \ref{modules-section-introduction}).
Basic references are \cite{FAC}, \cite{EGA} and \cite{SGA4}.
\section{Abelian presheaves}
\label{section-abelian-pre-sheaves}
\noindent
Let $\mathcal{C}$ be a category.
Abelian presheaves were introduced in
Sites, Sections \ref{sites-section-presheaves}
and \ref{sites-section-sheaves} and discussed a bit more
in Sites, Section \ref{sites-section-sheaves-algebraic-structures}.
We will follow the convention of this last reference, in that we think
of an abelian presheaf as a presheaf of sets endowed with addition rules
on all sets of sections compatible with the restriction mappings.
Recall that the category of abelian presheaves on $\mathcal{C}$
is denoted $\textit{PAb}(\mathcal{C})$.
\medskip\noindent
The category $\textit{PAb}(\mathcal{C})$ is abelian as defined in
Homology, Definition \ref{homology-definition-abelian-category}.
Given a map of presheaves $\varphi : \mathcal{G}_1 \to \mathcal{G}_2$
the kernel of $\varphi$ is the abelian presheaf
$U \mapsto \Ker(\mathcal{G}_1(U) \to \mathcal{G}_2(U))$ and
the cokernel of $\varphi$ is the presheaf
$U \mapsto \Coker(\mathcal{G}_1(U) \to \mathcal{G}_2(U))$.
Since the category of abelian groups is abelian it follows that
$\Coim = \Im$ because this holds over each $U$.
A sequence of abelian presheaves
$$
\mathcal{G}_1 \longrightarrow
\mathcal{G}_2 \longrightarrow
\mathcal{G}_3
$$
is exact if and only if
$\mathcal{G}_1(U) \to \mathcal{G}_2(U) \to \mathcal{G}_3(U)$
is an exact sequence of abelian groups for all $U \in \Ob(\mathcal{C})$.
We leave the verifications to the reader.
\begin{lemma}
\label{lemma-limits-colimits-abelian-presheaves}
Let $\mathcal{C}$ be a category.
\begin{enumerate}
\item All limits and colimits exist in $\textit{PAb}(\mathcal{C})$.
\item All limits and colimits commute with taking sections over objects of
$\mathcal{C}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $\mathcal{I} \to \textit{PAb}(\mathcal{C})$, $i \mapsto \mathcal{F}_i$
be a diagram. We can simply define abelian presheaves
$L$ and $C$ by the rules
$$
L : U \longmapsto \lim_i \mathcal{F}_i(U)
$$
and
$$
C : U \longmapsto \colim_i \mathcal{F}_i(U).
$$
It is clear that there are maps of abelian presheaves $L \to \mathcal{F}_i$
and $\mathcal{F}_i \to C$, by using the corresponding maps on groups of
sections over each $U$. It is straightforward to check that $L$ and $C$ endowed
with these maps are the limit and colimit of the diagram in
$\textit{PAb}(\mathcal{C})$. This proves (1) and (2). Details omitted.
\end{proof}
\section{Abelian sheaves}
\label{section-abelian-sheaves}
\noindent
Let $\mathcal{C}$ be a site.
The category of abelian sheaves on $\mathcal{C}$ is denoted
$\textit{Ab}(\mathcal{C})$. It is the full subcategory of
$\textit{PAb}(\mathcal{C})$ consisting of those abelian presheaves
whose underlying presheaves of sets are sheaves.
Properties ($\alpha$) -- ($\zeta$) of
Sites, Section \ref{sites-section-sheaves-algebraic-structures}
hold, see
Sites,
Proposition \ref{sites-proposition-functoriality-algebraic-structures-topoi}.
In particular the inclusion functor
$\textit{Ab}(\mathcal{C}) \to \textit{PAb}(\mathcal{C})$
has a left adjoint, namely the sheafification functor
$\mathcal{G} \mapsto \mathcal{G}^\#$.
\medskip\noindent
We suggest the reader prove the lemma on a piece of scratch paper rather
than reading the proof.
\begin{lemma}
\label{lemma-abelian-abelian}
Let $\mathcal{C}$ be a site. Let $\varphi : \mathcal{F} \to \mathcal{G}$
be a morphism of abelian sheaves on $\mathcal{C}$.
\begin{enumerate}
\item The category $\textit{Ab}(\mathcal{C})$ is an abelian category.
\item The kernel $\Ker(\varphi)$ of $\varphi$ is the same as the
kernel of $\varphi$ as a morphism of presheaves.
\item The morphism $\varphi$ is injective
(Homology, Definition \ref{homology-definition-injective-surjective})
if and only if $\varphi$ is injective as a map of presheaves
(Sites, Definition \ref{sites-definition-presheaves-injective-surjective}),
if and only if $\varphi$ is injective as a map of sheaves
(Sites, Definition \ref{sites-definition-sheaves-injective-surjective}).
\item The cokernel $\Coker(\varphi)$ of $\varphi$ is the sheafification
of the cokernel of $\varphi$ as a morphism of presheaves.
\item The morphism $\varphi$ is surjective
(Homology, Definition \ref{homology-definition-injective-surjective})
if and only if $\varphi$ is surjective as a map of sheaves
(Sites, Definition \ref{sites-definition-sheaves-injective-surjective}).
\item A complex of abelian sheaves
$$
\mathcal{F} \to \mathcal{G} \to \mathcal{H}
$$
is exact at $\mathcal{G}$ if and only if for all
$U \in \Ob(\mathcal{C})$ and all $s \in \mathcal{G}(U)$
mapping to zero in $\mathcal{H}(U)$ there exists a covering
$\{U_i \to U\}_{i \in I}$ in $\mathcal{C}$ such that each
$s|_{U_i}$ is in the image of $\mathcal{F}(U_i) \to \mathcal{G}(U_i)$.
\end{enumerate}
\end{lemma}
\begin{proof}
We claim that Homology, Lemma \ref{homology-lemma-adjoint-get-abelian}
applies to the categories $\mathcal{A} = \textit{Ab}(\mathcal{C})$
and $\mathcal{B} = \textit{PAb}(\mathcal{C})$, and the functors
$a : \mathcal{A} \to \mathcal{B}$ (inclusion), and
$b : \mathcal{B} \to \mathcal{A}$ (sheafification).
Let us check the assumptions of
Homology, Lemma \ref{homology-lemma-adjoint-get-abelian}.
Assumption (1) is that $\mathcal{A}$, $\mathcal{B}$ are additive categories,
$a$, $b$ are additive functors, and $a$ is right adjoint to $b$.
The first two statements are clear and adjointness is
Sites, Section \ref{sites-section-sheaves-algebraic-structures} ($\epsilon$).
Assumption (2) says that $\textit{PAb}(\mathcal{C})$ is abelian
which we saw in Section \ref{section-abelian-pre-sheaves} and
that sheafification is left exact, which is
Sites, Section \ref{sites-section-sheaves-algebraic-structures} ($\zeta$).
The final assumption is that $ba \cong \text{id}_\mathcal{A}$ which is
Sites, Section \ref{sites-section-sheaves-algebraic-structures} ($\delta$).
Hence Homology, Lemma \ref{homology-lemma-adjoint-get-abelian}
applies and we conclude that $\textit{Ab}(\mathcal{C})$ is abelian.
\medskip\noindent
In the proof of Homology, Lemma \ref{homology-lemma-adjoint-get-abelian}
it is shown that $\Ker(\varphi)$ and $\Coker(\varphi)$
are equal to the sheafification of the kernel and cokernel of $\varphi$
as a morphism of abelian presheaves. This proves (4). Since the kernel
is a equalizer (i.e., a limit) and since sheafification commutes with
finite limits, we conclude that (2) holds.
\medskip\noindent
Statement (2) implies (3). Statement (4) implies (5) by our description
of sheafification. The characterization of exactness in (6) follows from
(2) and (5), and the fact that the sequence is exact if and only if
$\Im(\mathcal{F} \to \mathcal{G}) =
\Ker(\mathcal{G} \to \mathcal{H})$.
\end{proof}
\noindent
Another way to say part (6) of the lemma is that a
sequence of abelian sheaves
$$
\mathcal{F}_1 \longrightarrow
\mathcal{F}_2 \longrightarrow
\mathcal{F}_3
$$
is exact if and only if the sheafification of
$U \mapsto \Im(\mathcal{F}_1(U) \to \mathcal{F}_2(U))$
is equal to the kernel of $\mathcal{F}_2 \to \mathcal{F}_3$.
\begin{lemma}
\label{lemma-limits-colimits-abelian-sheaves}
Let $\mathcal{C}$ be a site.
\begin{enumerate}
\item All limits and colimits exist in $\textit{Ab}(\mathcal{C})$.
\item Limits are the same as the corresponding limits of abelian presheaves
over $\mathcal{C}$ (i.e., commute with taking sections over objects of
$\mathcal{C}$).
\item Finite direct sums are the same as the corresponding finite direct sums
in the category of abelian pre-sheaves over $\mathcal{C}$.
\item A colimit is the sheafification of the corresponding colimit in
the category of abelian presheaves.
\item Filtered colimits are exact.
\end{enumerate}
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-limits-colimits-abelian-presheaves} limits and colimits
of abelian presheaves exist, and are described by taking limits and colimits
on the level of sections over objects.
\medskip\noindent
Let $\mathcal{I} \to \textit{Ab}(\mathcal{C})$, $i \mapsto \mathcal{F}_i$
be a diagram. Let $\lim_i \mathcal{F}_i$ be the limit of the diagram
as an abelian presheaf. By Sites, Lemma \ref{sites-lemma-limit-sheaf}
this is an abelian sheaf. Then it is quite easy to see that
$\lim_i \mathcal{F}_i$ is the limit of the diagram in
$\textit{Ab}(\mathcal{C})$. This proves limits exist and (2) holds.
\medskip\noindent
By Categories, Lemma \ref{categories-lemma-adjoint-exact}, and because
sheafification is left adjoint to the inclusion functor we see that
$\colim_i \mathcal{F}$ exists and is the sheafification of the colimit
in $\textit{PAb}(\mathcal{C})$. This proves colimits exist and (4) holds.
\medskip\noindent
Finite direct sums are the same thing as finite products in any abelian
category. Hence (3) follows from (2).
\medskip\noindent
Proof of (5). The statement means that given a system
$0 \to \mathcal{F}_i \to \mathcal{G}_i \to \mathcal{H}_i \to 0$
of exact sequences of abelian sheaves over a directed partially
ordered set $I$ the sequence
$0 \to \colim \mathcal{F}_i \to \colim \mathcal{G}_i \to
\colim \mathcal{H}_i \to 0$ is exact as well. A formal argument using
Homology, Lemma \ref{homology-lemma-check-exactness} and the
definition of colimits shows that the sequence
$\colim \mathcal{F}_i \to \colim \mathcal{G}_i \to \colim \mathcal{H}_i \to 0$
is exact. Note that $\colim \mathcal{F}_i \to \colim \mathcal{G}_i$
is the sheafification of the map of presheaf colimits which is
injective as each of the maps $\mathcal{F}_i \to \mathcal{G}_i$ is
injective. Since sheafification is exact we conclude.
\end{proof}
\section{Free abelian presheaves}
\label{section-free-abelian-presheaf}
\noindent
In order to prepare notation for the following definition, let us agree
to denote the free abelian group on a set $S$ as\footnote{In other chapters
the notation $\mathbf{Z}[S]$ sometimes indicates the polynomial ring over
$\mathbf{Z}$ on $S$.}
$\mathbf{Z}[S] = \bigoplus_{s \in S} \mathbf{Z}$. It is characterized
by the property
$$
\Mor_{\textit{Ab}}(\mathbf{Z}[S], A)
=
\Mor_{\textit{Sets}}(S, A)
$$
In other words the construction $S \mapsto \mathbf{Z}[S]$ is a left adjoint
to the forgetful functor $\textit{Ab} \to \textit{Sets}$.
\begin{definition}
\label{definition-free-abelian-presheaf-on}
Let $\mathcal{C}$ be a category. Let $\mathcal{G}$ be a presheaf of sets.
The {\it free abelian presheaf} $\mathbf{Z}_\mathcal{G}$ on $\mathcal{G}$
is the abelian presheaf defined by the rule
$$
U \longmapsto \mathbf{Z}[\mathcal{G}(U)].
$$
In the special case $\mathcal{G} = h_X$ of a representable presheaf
associated to an object $X$ of $\mathcal{C}$
we use the notation $\mathbf{Z}_X = \mathbf{Z}_{h_X}$. In other words
$$
\mathbf{Z}_X(U) = \mathbf{Z}[\Mor_\mathcal{C}(U, X)].
$$
\end{definition}
\noindent
This construction is clearly functorial in the presheaf $\mathcal{G}$.
In fact it is adjoint to the forgetful functor
$\textit{PAb}(\mathcal{C}) \to \textit{PSh}(\mathcal{C})$.
Here is the precise statement.
\begin{lemma}
\label{lemma-obvious-adjointness}
Let $\mathcal{C}$ be a category.
Let $\mathcal{G}$, $\mathcal{F}$ be a presheaves of sets.
Let $\mathcal{A}$ be an abelian presheaf.
Let $U$ be an object of $\mathcal{C}$. Then
we have
\begin{align*}
\Mor_{\textit{PSh}(\mathcal{C})}(h_U, \mathcal{F})
& =
\mathcal{F}(U), \\
\Mor_{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_\mathcal{G}, \mathcal{A})
& =
\Mor_{\textit{PSh}(\mathcal{C})}(\mathcal{G}, \mathcal{A}), \\
\Mor_{\textit{PAb}(\mathcal{C})}(\mathbf{Z}_U, \mathcal{A})
& =
\mathcal{A}(U).
\end{align*}
All of these equalities are functorial.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-coproduct-sum-free-abelian-presheaf}
Let $\mathcal{C}$ be a category.
Let $I$ be a set. For each $i \in I$ let
$\mathcal{G}_i$ be a presheaf of sets.
Then
$$
\mathbf{Z}_{\coprod_i \mathcal{G}_i}
=
\bigoplus\nolimits_{i \in I} \mathbf{Z}_{\mathcal{G}_i}
$$
in $\textit{PAb}(\mathcal{C})$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Free abelian sheaves}
\label{section-free-abelian-sheaf}
\noindent
Here is the notion of a free abelian sheaf on a sheaf of sets.
\begin{definition}
\label{definition-free-abelian-sheaf-on}
Let $\mathcal{C}$ be a site. Let $\mathcal{G}$ be a presheaf of sets.
The {\it free abelian sheaf} $\mathbf{Z}_\mathcal{G}^\#$
on $\mathcal{G}$ is the abelian sheaf $\mathbf{Z}_\mathcal{G}^\#$
which is the sheafification of the abelian presheaf on $\mathcal{G}$.
In the special case $\mathcal{G} = h_X$ of a representable presheaf
associated to an object $X$ of $\mathcal{C}$
we use the notation $\mathbf{Z}_X^\#$.
\end{definition}
\noindent
This construction is clearly functorial in the presheaf $\mathcal{G}$.
In fact it provides an adjoint to the forgetful functor
$\textit{Ab}(\mathcal{C}) \to \Sh(\mathcal{C})$.
Here is the precise statement.
\begin{lemma}
\label{lemma-obvious-adjointness-sheaves}
Let $\mathcal{C}$ be a site.
Let $\mathcal{G}$, $\mathcal{F}$ be a sheaves of sets.
Let $\mathcal{A}$ be an abelian sheaf.
Let $U$ be an object of $\mathcal{C}$. Then
we have
\begin{align*}
\Mor_{\Sh(\mathcal{C})}(h_U^\#, \mathcal{F})
& =
\mathcal{F}(U), \\
\Mor_{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_\mathcal{G}^\#,
\mathcal{A})
& =
\Mor_{\Sh(\mathcal{C})}(\mathcal{G}, \mathcal{A}), \\
\Mor_{\textit{Ab}(\mathcal{C})}(\mathbf{Z}_U^\#, \mathcal{A})
& =
\mathcal{A}(U).
\end{align*}
All of these equalities are functorial.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-may-sheafify-before-abelianize}
Let $\mathcal{C}$ be a site.
Let $\mathcal{G}$ be a presheaf of sets.
Then $\mathbf{Z}_\mathcal{G}^\# = (\mathbf{Z}_{\mathcal{G}^\#})^\#$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Ringed sites}
\label{section-ringed-sites}
\noindent
In this chapter we mainly work with sheaves of modules on a ringed site.
Hence we need to define this notion.
\begin{definition}
\label{definition-ringed-site}
Ringed sites.
\begin{enumerate}
\item A {\it ringed site} is a pair $(\mathcal{C}, \mathcal{O})$
where $\mathcal{C}$ is a site and $\mathcal{O}$ is a sheaf of rings
on $\mathcal{C}$. The sheaf $\mathcal{O}$ is called the
{\it structure sheaf} of the ringed site.
\item Let $(\mathcal{C}, \mathcal{O})$, $(\mathcal{C}', \mathcal{O}')$ be ringed
sites. A {\it morphism of ringed sites}
$$
(f, f^\sharp) :
(\mathcal{C}, \mathcal{O})
\longrightarrow
(\mathcal{C}', \mathcal{O}')
$$
is given by a morphism of sites $f : \mathcal{C} \to \mathcal{C}'$
(see Sites, Definition \ref{sites-definition-morphism-sites})
together with a map of sheaves of rings
$f^\sharp : f^{-1}\mathcal{O}' \to \mathcal{O}$, which by adjunction
is the same thing as a map of sheaves of rings
$f^\sharp : \mathcal{O}' \to f_*\mathcal{O}$.
\item Let
$(f, f^\sharp) :
(\mathcal{C}_1, \mathcal{O}_1) \to (\mathcal{C}_2, \mathcal{O}_2)$ and
$(g, g^\sharp) :
(\mathcal{C}_2, \mathcal{O}_2) \to (\mathcal{C}_3, \mathcal{O}_3)$
be morphisms of ringed sites. Then we define
the {\it composition of morphisms of ringed sites}
by the rule
$$
(g, g^\sharp) \circ (f, f^\sharp) = (g \circ f, f^\sharp \circ g^\sharp).
$$
Here we use composition of morphisms of sites defined in
Sites, Definition \ref{sites-definition-composition-morphisms-sites}
and $f^\sharp \circ g^\sharp$ indicates the morphism of sheaves of
rings
$$
\mathcal{O}_3 \xrightarrow{g^\sharp} g_*\mathcal{O}_2
\xrightarrow{g_*f^\sharp} g_*f_*\mathcal{O}_1 = (g \circ f)_*\mathcal{O}_1
$$
\end{enumerate}
\end{definition}
\section{Ringed topoi}
\label{section-ringed-topoi}
\noindent
A ringed topos is just a ringed site, except that the notion of
a morphism of ringed topoi is different from the notion of a morphism
of ringed sites.
\begin{definition}
\label{definition-ringed-topos}
Ringed topoi.
\begin{enumerate}
\item A {\it ringed topos} is a pair
$(\Sh(\mathcal{C}), \mathcal{O})$
where $\mathcal{C}$ is a site and $\mathcal{O}$ is a sheaf of rings
on $\mathcal{C}$. The sheaf $\mathcal{O}$ is called the
{\it structure sheaf} of the ringed site.
\item Let $(\Sh(\mathcal{C}), \mathcal{O})$,
$(\Sh(\mathcal{C}'), \mathcal{O}')$ be ringed topoi.
A {\it morphism of ringed topoi}
$$
(f, f^\sharp) :
(\Sh(\mathcal{C}), \mathcal{O})
\longrightarrow
(\Sh(\mathcal{C}'), \mathcal{O}')
$$
is given by a morphism of topoi $f : \Sh(\mathcal{C}) \to \Sh(\mathcal{C}')$
(see Sites, Definition \ref{sites-definition-topos})
together with a map of sheaves of rings
$f^\sharp : f^{-1}\mathcal{O}' \to \mathcal{O}$, which by adjunction
is the same thing as a map of sheaves of rings
$f^\sharp : \mathcal{O}' \to f_*\mathcal{O}$.
\item Let
$(f, f^\sharp) :
(\Sh(\mathcal{C}_1), \mathcal{O}_1)
\to (\Sh(\mathcal{C}_2), \mathcal{O}_2)$ and
$(g, g^\sharp) :
(\Sh(\mathcal{C}_2), \mathcal{O}_2) \to
(\Sh(\mathcal{C}_3), \mathcal{O}_3)$
be morphisms of ringed topoi. Then we define
the {\it composition of morphisms of ringed topoi}
by the rule
$$
(g, g^\sharp) \circ (f, f^\sharp) = (g \circ f, f^\sharp \circ g^\sharp).
$$
Here we use composition of morphisms of topoi defined in
Sites, Definition \ref{sites-definition-topos}
and $f^\sharp \circ g^\sharp$ indicates the morphism of sheaves of
rings
$$
\mathcal{O}_3 \xrightarrow{g^\sharp} g_*\mathcal{O}_2
\xrightarrow{g_*f^\sharp} g_*f_*\mathcal{O}_1 = (g \circ f)_*\mathcal{O}_1
$$
\end{enumerate}
\end{definition}
\noindent
Every morphism of ringed topoi is the composition of an equivalence
of ringed topoi with a morphism of ringed topoi associated to a morphism
of ringed sites. Here is the precise statement.
\begin{lemma}
\label{lemma-morphism-ringed-topoi-comes-from-morphism-ringed-sites}
Let $(f, f^\sharp) :
(\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})
\to (\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D})$
be a morphism of ringed topoi. There exists a factorization
$$
\xymatrix{
(\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})
\ar[rr]_{(f, f^\sharp)}
\ar[d]_{(g, g^\sharp)}
& &
(\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D}) \ar[d]^{(e, e^\sharp)}
\\
(\Sh(\mathcal{C}'), \mathcal{O}_{\mathcal{C}'})
\ar[rr]^{(h, h^\sharp)} & &
(\Sh(\mathcal{D}'), \mathcal{O}_{\mathcal{D}'})
}
$$
where
\begin{enumerate}
\item $g : \Sh(\mathcal{C}) \to \Sh(\mathcal{C}')$
is an equivalence of topoi induced by a special cocontinuous functor
$\mathcal{C} \to \mathcal{C}'$ (see
Sites, Definition \ref{sites-definition-special-cocontinuous-functor}),
\item $e : \Sh(\mathcal{D}) \to \Sh(\mathcal{D}')$
is an equivalence of topoi induced by a special cocontinuous functor
$\mathcal{D} \to \mathcal{D}'$ (see
Sites, Definition \ref{sites-definition-special-cocontinuous-functor}),
\item $\mathcal{O}_{\mathcal{C}'} = g_*\mathcal{O}_\mathcal{C}$
and $g^\sharp$ is the obvious map,
\item $\mathcal{O}_{\mathcal{D}'} = e_*\mathcal{O}_\mathcal{D}$
and $e^\sharp$ is the obvious map,
\item the sites $\mathcal{C}'$ and $\mathcal{D}'$ have final objects
and fibre products (i.e., all finite limits),
\item $h$ is a morphism of sites induced by a continuous functor
$u : \mathcal{D}' \to \mathcal{C}'$ which commutes with all finite limits
(i.e., it satisfies the assumptions of
Sites, Proposition \ref{sites-proposition-get-morphism}), and
\item given any set of sheaves $\mathcal{F}_i$ (resp.\ $\mathcal{G}_j$)
on $\mathcal{C}$ (resp.\ $\mathcal{D}$) we may assume each of these is
a representable sheaf on $\mathcal{C}'$ (resp.\ $\mathcal{D}'$).
\end{enumerate}
Moreover, if $(f, f^\sharp)$ is an equivalence of ringed topoi,
then we can choose the diagram such that
$\mathcal{C}' = \mathcal{D}'$,
$\mathcal{O}_{\mathcal{C}'} = \mathcal{O}_{\mathcal{D}'}$
and $(h, h^\sharp)$ is the identity.
\end{lemma}
\begin{proof}
This follows from
Sites, Lemma \ref{sites-lemma-morphism-topoi-comes-from-morphism-sites},
and
Sites, Remarks
\ref{sites-remark-morphism-topoi-comes-from-morphism-sites} and
\ref{sites-remark-equivalence-topoi-comes-from-morphism-sites}.
You just have to carry along the sheaves of rings. Some details omitted.
\end{proof}
\section{2-morphisms of ringed topoi}
\label{section-2-category}
\noindent
This is a brief section concerning the notion of a $2$-morphism
of ringed topoi.
\begin{definition}
\label{definition-2-morphism-ringed-topoi}
Let
$f, g :
(\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})
\to
(\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D})$
be two morphisms of ringed topoi. A {\it 2-morphism from $f$ to $g$}
is given by a transformation of functors $t : f_* \to g_*$ such that
$$
\xymatrix{
& \mathcal{O}_\mathcal{D}
\ar[ld]_{f^\sharp}
\ar[rd]^{g^\sharp} \\
f_*\mathcal{O}_\mathcal{C} \ar[rr]^t & &
g_*\mathcal{O}_\mathcal{C}
}
$$
is commutative.
\end{definition}
\noindent
Pictorially we sometimes represent $t$ as follows:
$$
\xymatrix{
(\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})
\rrtwocell^f_g{t}
&
&
(\Sh(\mathcal{D}), \mathcal{O}_\mathcal{D})
}
$$
As in
Sites, Section \ref{sites-section-2-category}
giving a 2-morphism $t : f_* \to g_*$ is equivalent to giving
$t : g^{-1} \to f^{-1}$ (usually denoted by the same symbol)
such that the diagram
$$
\xymatrix{
f^{-1}\mathcal{O}_\mathcal{D}
\ar[rd]_{f^\sharp} & &
g^{-1}\mathcal{O}_\mathcal{D} \ar[ll]^t \ar[ld]^{g^\sharp} \\
& \mathcal{O}_\mathcal{C}
}
$$
is commutative. As in
Sites, Section \ref{sites-section-2-category}
the axioms of a strict 2-category hold with horizontal and
vertical compositions defined as explained in loc.\ cit.
\section{Presheaves of modules}
\label{section-presheaves-modules}
\noindent
Let $\mathcal{C}$ be a category.
Let $\mathcal{O}$ be a presheaf of rings on $\mathcal{C}$.
At this point we have not yet defined a presheaf of $\mathcal{O}$-modules.
Thus we do so right now.
\begin{definition}
\label{definition-presheaf-modules}
Let $\mathcal{C}$ be a category, and
let $\mathcal{O}$ be a presheaf of rings on $\mathcal{C}$.
\begin{enumerate}
\item A {\it presheaf of $\mathcal{O}$-modules}
is given by an abelian presheaf $\mathcal{F}$ together with a
map of presheaves of sets
$$
\mathcal{O} \times \mathcal{F} \longrightarrow \mathcal{F}
$$
such that for every object $U$ of $\mathcal{C}$ the map
$\mathcal{O}(U) \times \mathcal{F}(U) \to \mathcal{F}(U)$
defines the structure of an $\mathcal{O}(U)$-module
structure on the abelian group $\mathcal{F}(U)$.
\item A {\it morphism $\varphi : \mathcal{F} \to \mathcal{G}$
of presheaves of $\mathcal{O}$-modules} is a morphism of abelian presheaves
$\varphi : \mathcal{F} \to \mathcal{G}$ such that
the diagram
$$
\xymatrix{
\mathcal{O} \times \mathcal{F} \ar[r] \ar[d]_{\text{id} \times \varphi} &
\mathcal{F} \ar[d]^{\varphi} \\
\mathcal{O} \times \mathcal{G} \ar[r] &
\mathcal{G}
}
$$
commutes.
\item The set of $\mathcal{O}$-module morphisms as above is
denoted $\Hom_\mathcal{O}(\mathcal{F}, \mathcal{G})$.
\item The category of presheaves of $\mathcal{O}$-modules is denoted
$\textit{PMod}(\mathcal{O})$.
\end{enumerate}
\end{definition}
\noindent
Suppose that $\mathcal{O}_1 \to \mathcal{O}_2$ is a
morphism of presheaves of rings on the category $\mathcal{C}$. In this case,
if $\mathcal{F}$ is a presheaf of $\mathcal{O}_2$-modules
then we can think of $\mathcal{F}$ as a presheaf of
$\mathcal{O}_1$-modules by using the composition
$$
\mathcal{O}_1 \times \mathcal{F}
\to
\mathcal{O}_2 \times \mathcal{F}
\to
\mathcal{F}.
$$
We sometimes denote this by $\mathcal{F}_{\mathcal{O}_1}$
to indicate the restriction of rings. We call this
the {\it restriction of $\mathcal{F}$}. We obtain the
restriction functor
$$
\textit{PMod}(\mathcal{O}_2)
\longrightarrow
\textit{PMod}(\mathcal{O}_1)
$$
\medskip\noindent
On the other hand, given a presheaf of $\mathcal{O}_1$-modules
$\mathcal{G}$
we can construct a presheaf of $\mathcal{O}_2$-modules
$\mathcal{O}_2 \otimes_{p, \mathcal{O}_1} \mathcal{G}$
by the rule
$$
U \longmapsto
\left(\mathcal{O}_2 \otimes_{p, \mathcal{O}_1} \mathcal{G}\right)(U)
=
\mathcal{O}_2(U) \otimes_{\mathcal{O}_1(U)} \mathcal{G}(U)
$$
where $U \in \Ob(\mathcal{C})$, with obvious restriction mappings.
The index $p$ stands for ``presheaf'' and not ``point''.
This presheaf is called the tensor product presheaf. We obtain
the {\it change of rings} functor
$$
\textit{PMod}(\mathcal{O}_1)
\longrightarrow
\textit{PMod}(\mathcal{O}_2)
$$
\begin{lemma}
\label{lemma-adjointness-tensor-restrict-presheaves}
With $\mathcal{C}$, $\mathcal{O}_1 \to \mathcal{O}_2$, $\mathcal{F}$ and
$\mathcal{G}$ as above there exists a canonical bijection
$$
\Hom_{\mathcal{O}_1}(\mathcal{G}, \mathcal{F}_{\mathcal{O}_1})
=
\Hom_{\mathcal{O}_2}(
\mathcal{O}_2 \otimes_{p, \mathcal{O}_1} \mathcal{G},
\mathcal{F}
)
$$
In other words, the restriction and change of rings functors defined
above are adjoint to each other.
\end{lemma}
\begin{proof}
This follows from the fact that for a ring map
$A \to B$ the restriction functor and the change
of ring functor are adjoint to each other.
\end{proof}
\section{Sheaves of modules}
\label{section-sheaves-modules}
\begin{definition}
\label{definition-sheaf-modules}
Let $\mathcal{C}$ be a site.
Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$.
\begin{enumerate}
\item A {\it sheaf of $\mathcal{O}$-modules} is a presheaf
of $\mathcal{O}$-modules $\mathcal{F}$,
see Definition \ref{definition-presheaf-modules},
such that the underlying presheaf of abelian groups $\mathcal{F}$
is a sheaf.
\item A {\it morphism of sheaves of $\mathcal{O}$-modules}
is a morphism of presheaves of $\mathcal{O}$-modules.
\item Given sheaves of $\mathcal{O}$-modules
$\mathcal{F}$ and $\mathcal{G}$ we denote
$\Hom_\mathcal{O}(\mathcal{F}, \mathcal{G})$
the set of morphism of sheaves of $\mathcal{O}$-modules.
\item The category of sheaves of $\mathcal{O}$-modules
is denoted $\textit{Mod}(\mathcal{O})$.
\end{enumerate}
\end{definition}
\noindent
This definition kind of makes sense even if $\mathcal{O}$ is just a
presheaf of rings, although we do not know any examples where
this is useful, and we will avoid using the terminology
``sheaves of $\mathcal{O}$-modules''
in case $\mathcal{O}$ is not a sheaf of rings.
\section{Sheafification of presheaves of modules}
\label{section-sheafification-presheaves-modules}
\begin{lemma}
\label{lemma-sheafification-presheaf-modules}
Let $\mathcal{C}$ be a site.
Let $\mathcal{O}$ be a presheaf of rings on $\mathcal{C}$
Let $\mathcal{F}$ be a presheaf $\mathcal{O}$-modules.
Let $\mathcal{O}^\#$ be the sheafification of $\mathcal{O}$ as a presheaf
of rings, see Sites, Section \ref{sites-section-sheaves-algebraic-structures}.
Let $\mathcal{F}^\#$ be the sheafification of $\mathcal{F}$
as a presheaf of abelian groups. There exists a map of
sheaves of sets
$$
\mathcal{O}^\# \times \mathcal{F}^\#
\longrightarrow
\mathcal{F}^\#
$$
which makes the diagram
$$
\xymatrix{
\mathcal{O} \times \mathcal{F} \ar[r] \ar[d] &
\mathcal{F} \ar[d] \\
\mathcal{O}^\# \times \mathcal{F}^\# \ar[r] &
\mathcal{F}^\#
}
$$
commute and which makes $\mathcal{F}^\#$ into a sheaf
of $\mathcal{O}^\#$-modules. In addition, if $\mathcal{G}$
is a sheaf of $\mathcal{O}^\#$-modules, then any morphism
of presheaves of $\mathcal{O}$-modules $\mathcal{F} \to \mathcal{G}$
(into the restriction of $\mathcal{G}$ to a $\mathcal{O}$-module)
factors uniquely as $\mathcal{F} \to \mathcal{F}^\# \to \mathcal{G}$
where $\mathcal{F}^\# \to \mathcal{G}$ is a morphism of
$\mathcal{O}^\#$-modules.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\noindent
This actually means that the functor
$i : \textit{Mod}(\mathcal{O}^\#) \to \textit{PMod}(\mathcal{O})$
(combining restriction and including sheaves into presheaves)
and the sheafification functor of the lemma
${}^\# : \textit{PMod}(\mathcal{O}) \to \textit{Mod}(\mathcal{O}^\#)$
are adjoint. In a formula
$$
\Mor_{\textit{PMod}(\mathcal{O})}(\mathcal{F}, i\mathcal{G})
=
\Mor_{\textit{Mod}(\mathcal{O}^\#)}(\mathcal{F}^\#, \mathcal{G})
$$
An important case happens when $\mathcal{O}$ is already a sheaf of
rings. In this case the formula reads
$$
\Mor_{\textit{PMod}(\mathcal{O})}(\mathcal{F}, i\mathcal{G})
=
\Mor_{\textit{Mod}(\mathcal{O})}(\mathcal{F}^\#, \mathcal{G})
$$
because $\mathcal{O} = \mathcal{O}^\#$ in this case.
\begin{lemma}
\label{lemma-sheafification-exact}
Let $\mathcal{C}$ be a site.
Let $\mathcal{O}$ be a presheaf of rings on $\mathcal{C}$
The sheafification functor
$$
\textit{PMod}(\mathcal{O}) \longrightarrow \textit{Mod}(\mathcal{O}^\#), \quad
\mathcal{F} \longmapsto \mathcal{F}^\#
$$
is exact.
\end{lemma}
\begin{proof}
This is true because it holds for sheafification
$\textit{PAb}(\mathcal{C}) \to \textit{Ab}(\mathcal{C})$.
See the discussion in Section \ref{section-abelian-sheaves}.
\end{proof}
\noindent
Let $\mathcal{C}$ be a site.
Let $\mathcal{O}_1 \to \mathcal{O}_2$ be
a morphism of sheaves of rings on $\mathcal{C}$.
In Section \ref{section-presheaves-modules}
we defined a restriction functor
and a change of rings functor on presheaves of modules
associated to this situation.
\medskip\noindent
If $\mathcal{F}$ is a sheaf of $\mathcal{O}_2$-modules
then the restriction $\mathcal{F}_{\mathcal{O}_1}$
of $\mathcal{F}$ is clearly a sheaf
of $\mathcal{O}_1$-modules. We obtain the restriction functor
$$
\textit{Mod}(\mathcal{O}_2)
\longrightarrow
\textit{Mod}(\mathcal{O}_1)
$$
\medskip\noindent
On the other hand, given a sheaf of $\mathcal{O}_1$-modules
$\mathcal{G}$ the presheaf of $\mathcal{O}_2$-modules
$\mathcal{O}_2 \otimes_{p, \mathcal{O}_1} \mathcal{G}$
is in general not a sheaf. Hence we define the
{\it tensor product sheaf}
$\mathcal{O}_2 \otimes_{\mathcal{O}_1} \mathcal{G}$
by the formula
$$
\mathcal{O}_2 \otimes_{\mathcal{O}_1} \mathcal{G}
=
(\mathcal{O}_2 \otimes_{p, \mathcal{O}_1} \mathcal{G})^\#
$$
as the sheafification of our construction for presheaves.
We obtain the {\it change of rings} functor
$$
\textit{Mod}(\mathcal{O}_1)
\longrightarrow
\textit{Mod}(\mathcal{O}_2)
$$
\begin{lemma}
\label{lemma-adjointness-tensor-restrict}
With $X$, $\mathcal{O}_1$, $\mathcal{O}_2$, $\mathcal{F}$ and
$\mathcal{G}$ as above there exists a canonical bijection
$$
\Hom_{\mathcal{O}_1}(\mathcal{G}, \mathcal{F}_{\mathcal{O}_1})
=
\Hom_{\mathcal{O}_2}(
\mathcal{O}_2 \otimes_{\mathcal{O}_1} \mathcal{G},
\mathcal{F}
)
$$
In other words, the restriction and change of rings functors
are adjoint to each other.
\end{lemma}
\begin{proof}
This follows from
Lemma \ref{lemma-adjointness-tensor-restrict-presheaves}
and the fact that
$\Hom_{\mathcal{O}_2}(
\mathcal{O}_2 \otimes_{\mathcal{O}_1} \mathcal{G},
\mathcal{F}
)
=
\Hom_{\mathcal{O}_2}(
\mathcal{O}_2 \otimes_{p, \mathcal{O}_1} \mathcal{G},
\mathcal{F}
)$
because $\mathcal{F}$ is a sheaf.
\end{proof}
\begin{lemma}
\label{lemma-epimorphism-modules}
Let $\mathcal{C}$ be a site.
Let $\mathcal{O} \to \mathcal{O}'$ be an epimorphism of sheaves of rings.
Let $\mathcal{G}_1, \mathcal{G}_2$ be $\mathcal{O}'$-modules.
Then
$$
\Hom_{\mathcal{O}'}(\mathcal{G}_1, \mathcal{G}_2) =
\Hom_\mathcal{O}(\mathcal{G}_1, \mathcal{G}_2).
$$
In other words, the restriction functor
$\textit{Mod}(\mathcal{O}') \to \textit{Mod}(\mathcal{O})$ is fully faithful.
\end{lemma}
\begin{proof}
This is the sheaf version of
Algebra, Lemma \ref{algebra-lemma-epimorphism-modules}
and is proved in exactly the same way.
\end{proof}
\section{Morphisms of topoi and sheaves of modules}
\label{section-sheaves-modules-functorial}
\noindent
All of this material is completely straightforward.
We formulate everything in the case of morphisms of topoi,
but of course the results also hold in the case of morphisms of sites.
\begin{lemma}
\label{lemma-pushforward-module}
Let $\mathcal{C}$, $\mathcal{D}$ be sites.
Let $f : \Sh(\mathcal{C}) \to \Sh(\mathcal{D})$
be a morphism of topoi.