forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
spaces-over-fields.tex
1433 lines (1263 loc) · 56.9 KB
/
spaces-over-fields.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Algebraic Spaces over Fields}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter is the analogue of the chapter on varieties in the setting
of algebraic spaces. A reference for algebraic spaces is
\cite{Kn}.
\section{Conventions}
\label{section-conventions}
\noindent
The standing assumption is that all schemes are contained in
a big fppf site $\Sch_{fppf}$. And all rings $A$ considered
have the property that $\Spec(A)$ is (isomorphic) to an
object of this big site.
\medskip\noindent
Let $S$ be a scheme and let $X$ be an algebraic space over $S$.
In this chapter and the following we will write $X \times_S X$
for the product of $X$ with itself (in the category of algebraic
spaces over $S$), instead of $X \times X$.
\section{Generically finite morphisms}
\label{section-generically-finite}
\noindent
This section continues the discussion in
Decent Spaces, Section \ref{decent-spaces-section-generically-finite}
and the analogue for morphisms of algebraic spaces of
Varieties, Section \ref{varieties-section-generically-finite}.
\begin{lemma}
\label{lemma-quasi-finite-in-codim-1}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Assume $f$ is locally of finite type and $Y$ is locally Noetherian.
Let $y \in |Y|$ be a point of codimension $\leq 1$ on $Y$.
Let $X^0 \subset |X|$ be the set of points of codimension $0$ on $X$.
Assume in addition one of the following conditions is satisfied
\begin{enumerate}
\item for every $x \in X^0$ the transcendence degree of $x/f(x)$ is $0$,
\item for every $x \in X^0$ with $f(x) \leadsto y$
the transcendence degree of $x/f(x)$ is $0$,
\item $f$ is quasi-finite at every $x \in X^0$,
\item $f$ is quasi-finite at a dense set of points of $|X|$,
\item add more here.
\end{enumerate}
Then $f$ is quasi-finite at every point of $X$ lying over $y$.
\end{lemma}
\begin{proof}
We want to reduce the proof to the case of schemes. To do this we
choose a commutative diagram
$$
\xymatrix{
U \ar[r] \ar[d]_g & X \ar[d]^f \\
V \ar[r] & Y
}
$$
where $U$, $V$ are schemes and where the horizontal arrows are \'etale
and surjective. Pick $v \in V$ mapping to $y$. Observe that
$V$ is locally Noetherian and that $\dim(\mathcal{O}_{V, v}) \leq 1$
(see Properties of Spaces, Definitions
\ref{spaces-properties-definition-dimension-local-ring} and
Remark \ref{spaces-properties-remark-list-properties-local-etale-topology}).
The fibre $U_v$ of $U \to V$ over $v$ surjects onto
$f^{-1}(\{y\}) \subset |X|$. The inverse image of $X^0$ in $U$
is exactly the set of
generic points of irreducible components of $U$ (Properties of Spaces, Lemma
\ref{spaces-properties-lemma-codimension-0-points}).
If $\eta \in U$ is such a point with image $x \in X^0$, then
the transcendence degree of $x / f(x)$ is the transcendence
degree of $\kappa(\eta)$ over $\kappa(g(\eta))$
(Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-dimension-fibre}).
Observe that $U \to V$ is quasi-finite at $u \in U$ if and only if
$f$ is quasi-finite at the image of $u$ in $X$.
\medskip\noindent
Case (1). Here case (1) of
Varieties, Lemma \ref{varieties-lemma-quasi-finite-in-codim-1} applies
and we conclude that $U \to V$ is quasi-finite at all points of $U_v$.
Hence $f$ is quasi-finite at every point lying over $y$.
\medskip\noindent
Case (2). Let $u \in U$ be a generic point of an irreducible component
whose image in $V$ specializes to $v$. Then the image $x \in X^0$ of
$u$ has the property that $f(x) \leadsto y$. Hence we see that
case (2) of
Varieties, Lemma \ref{varieties-lemma-quasi-finite-in-codim-1} applies
and we conclude as before.
\medskip\noindent
Case (3) follows from case (3) of
Varieties, Lemma \ref{varieties-lemma-quasi-finite-in-codim-1}.
\medskip\noindent
In case (4), since $|U| \to |X|$ is open, we see that
the set of points where $U \to V$ is quasi-finite is dense as well.
Hence case (4) of
Varieties, Lemma \ref{varieties-lemma-quasi-finite-in-codim-1} applies.
\end{proof}
\begin{lemma}
\label{lemma-finite-in-codim-1}
Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces
over $S$. Assume $f$ is proper and $Y$ is locally Noetherian.
Let $y \in Y$ be a point of codimension $\leq 1$ in $Y$.
Let $X^0 \subset |X|$ be the set of points of codimension $0$ on $X$.
Assume in addition one of the
following conditions is satisfied
\begin{enumerate}
\item for every $x \in X^0$ the transcendence degree of $x/f(x)$ is $0$,
\item for every $x \in X^0$ with $f(x) \leadsto y$ the transcendence degree
of $x/f(x)$ is $0$,
\item $f$ is quasi-finite at every $x \in X^0$,
\item $f$ is quasi-finite at a dense set of points of $|X|$,
\item add more here.
\end{enumerate}
Then there exists an open subspace $Y' \subset Y$ containing $y$ such that
$Y' \times_Y X \to Y'$ is finite.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-quasi-finite-in-codim-1} the morphism $f$ is
quasi-finite at every point lying over $y$. Let $\overline{y} : \Spec(k) \to Y$
be a geometric point lying over $y$. Then $|X_{\overline{y}}|$ is a
discrete space (Decent Spaces, Lemma
\ref{decent-spaces-lemma-conditions-on-fibre-and-qf}).
Since $X_{\overline{y}}$ is quasi-compact as $f$ is proper we conclude
that $|X_{\overline{y}}|$ is finite.
Thus we can apply Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-proper-finite-fibre-finite-in-neighbourhood}
to conclude.
\end{proof}
\begin{lemma}
\label{lemma-modification-normal-iso-over-codimension-1}
Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$.
Let $f : Y \to X$ be a birational proper morphism of algebraic spaces
with $Y$ reduced.
Let $U \subset X$ be the maximal open over which $f$ is an isomorphism.
Then $U$ contains
\begin{enumerate}
\item every point of codimension $0$ in $X$,
\item every $x \in |X|$ of codimension $1$ on $X$ such that the local ring of
$X$ at $x$ is normal (Properties of Spaces, Remark
\ref{spaces-properties-remark-list-properties-local-ring-local-etale-topology}),
and
\item every $x \in |X|$ such that the fibre of $|Y| \to |X|$ over $x$ is
finite and such that the local ring of $X$ at $x$ is normal.
\end{enumerate}
\end{lemma}
\begin{proof}
Part (1) follows from Decent Spaces, Lemma
\ref{decent-spaces-lemma-birational-isomorphism-over-dense-open}
(and the fact that the Noetherian algebraic spaces $X$ and $Y$
are quasi-separated and hence decent).
Part (2) follows from part (3) and Lemma \ref{lemma-finite-in-codim-1}
(and the fact that finite morphisms have finite fibres).
Let $x \in |X|$ be as in (3). By
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-proper-finite-fibre-finite-in-neighbourhood}
(which applies by Decent Spaces, Lemma
\ref{decent-spaces-lemma-conditions-on-fibre-and-qf})
we may assume $f$ is finite. Choose an affine scheme $X'$ and
an \'etale morphism $X' \to X$ and a point $x' \in X$ mapping to $x$.
It suffices to show there exists an open neighbourhood $U'$ of $x' \in X'$
such that $Y \times_X X' \to X'$ is an isomorphism over $U'$
(namely, then $U$ contains the image of $U'$ in $X$, see Spaces, Lemma
\ref{spaces-lemma-descent-representable-transformations-property}).
Then $Y \times_X X' \to X$ is a finite birational
(Decent Spaces, Lemma \ref{decent-spaces-lemma-birational-etale-localization})
morphism. Since a finite morphism is affine we reduce to
the case of a finite birational morphism of Noetherian affine schemes
$Y \to X$ and $x \in X$ such that $\mathcal{O}_{X, x}$ is a
normal domain. This is treated in Varieties, Lemma
\ref{varieties-lemma-modification-normal-iso-over-codimension-1}.
\end{proof}
\section{Integral algebraic spaces}
\label{section-integral-spaces}
\noindent
We have not yet defined the notion of an integral algebraic space. The
problem is that being integral is not an \'etale local property of schemes.
We could use the property, that $X$ is reduced and $|X|$ is irreducible,
given in Properties, Lemma \ref{properties-lemma-characterize-integral}
to define integral algebraic spaces. In this case the algebraic
space described in Spaces, Example \ref{spaces-example-infinite-product}
would be integral which does not seem right.
To avoid this type of pathology we will in addition assume that $X$ is a
decent algebraic space, although perhaps a weaker alternative exists.
\begin{definition}
\label{definition-integral-algebraic-space}
Let $S$ be a scheme. We say an algebraic space $X$ over $S$ is
{\it integral} if it is reduced, decent, and $|X|$ is irreducible.
\end{definition}
\noindent
In this case the irreducible topological space $|X|$ is sober
(Decent Spaces, Proposition \ref{decent-spaces-proposition-reasonable-sober}).
Hence it has a unique generic point $x$.
Then $x$ is contained in the schematic locus of $X$
(Decent Spaces, Theorem \ref{decent-spaces-theorem-decent-open-dense-scheme})
and we can look at its residue field as a substitute for
the function field of $X$ (not yet defined; insert future reference here).
In Decent Spaces, Lemma
\ref{decent-spaces-lemma-finitely-many-irreducible-components}
we characterized decent algebraic spaces with finitely many
irreducible components. Applying that lemma we see that an
algebraic space $X$ is integral if it is
reduced, has an irreducible dense open subscheme $X'$
with generic point $x'$ and the morphism $x' \to X$ is quasi-compact.
\begin{lemma}
\label{lemma-integral-sections}
Let $S$ be a scheme. Let $X$ be an integral algebraic space over $S$.
Then $\Gamma(X, \mathcal{O}_X)$ is a domain.
\end{lemma}
\begin{proof}
Set $R = \Gamma(X, \mathcal{O}_X)$. If $f, g \in R$ are nonzero and
$fg = 0$ then $X = V(f) \cup V(g)$ where $V(f)$ denotes the closed subspace
of $X$ cut out by $f$. Since $X$ is irreducible, we see that either
$V(f) = X$ or $V(g) = X$. Then either $f = 0$ or $g = 0$ by
Properties of Spaces, Lemma \ref{spaces-properties-lemma-reduced-space}.
\end{proof}
\noindent
The following lemma characterizes dominant morphisms of finite degree
between integral algebraic spaces.
\begin{lemma}
\label{lemma-finite-degree}
Let $S$ be a scheme. Let $X$, $Y$ be integral algebraic spaces over $S$
Let $x \in |X|$ and $y \in |Y|$ be the generic points. Let $f : X \to Y$
be locally of finite type. Assume $f$ is dominant
(Morphisms of Spaces, Definition \ref{spaces-morphisms-definition-dominant}).
The following are equivalent:
\begin{enumerate}
\item the transcendence degree of $x/y$ is $0$,
\item the extension $\kappa(x) \supset \kappa(y)$ (see proof) is finite,
\item there exist nonempty affine opens $U \subset X$ and $V \subset Y$
such that $f(U) \subset V$ and $f|_U : U \to V$ is finite,
\item $f$ is quasi-finite at $x$, and
\item $x$ is the only point of $|X|$ mapping to $y$.
\end{enumerate}
If $f$ is separated or if $f$ is quasi-compact, then these are
also equivalent to
\begin{enumerate}
\item[(6)] there exists a nonempty affine open $V \subset Y$ such
that $f^{-1}(V) \to V$ is finite.
\end{enumerate}
\end{lemma}
\begin{proof}
By elementary topology, we see that $f(x) = y$ as $f$ is dominant.
Let $Y' \subset Y$ be the schematic locus of $Y$ and let
$X' \subset f^{-1}(Y')$ be the schematic locus of $f^{-1}(Y')$.
By the discussion above, using
Decent Spaces, Proposition \ref{decent-spaces-proposition-reasonable-sober} and
Theorem \ref{decent-spaces-theorem-decent-open-dense-scheme},
we see that $x \in |X'|$ and $y \in |Y'|$.
Then $f|_{X'} : X' \to Y'$ is a morphism of integral schemes
which is locally of finite type. Thus we see that (1), (2), (3)
are equivalent by Morphisms, Lemma \ref{morphisms-lemma-finite-degree}.
\medskip\noindent
Condition (4) implies condition (1) by
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-compare-tr-deg}
applied to $X \to Y \to Y$.
On the other hand, condition (3) implies condition (4) as
a finite morphism is quasi-finite and as $x \in U$ because $x$
is the generic point. Thus (1) -- (4) are equivalent.
\medskip\noindent
Assume the equivalent conditions (1) -- (4). Suppose that
$x' \mapsto y$. Then $x \leadsto x'$ is a specialization in the
fibre of $|X| \to |Y|$ over $y$. If $x' \not = x$, then $f$ is not
quasi-finite at $x$ by Decent Spaces, Lemma
\ref{decent-spaces-lemma-conditions-on-point-in-fibre-and-qf}.
Hence $x = x'$ and (5) holds. Conversely, if (5) holds, then
(5) holds for the morphism of schemes $X' \to Y'$ (see above)
and we can use
Morphisms, Lemma \ref{morphisms-lemma-finite-degree}
to see that (1) holds.
\medskip\noindent
Observe that (6) implies the equivalent conditions (1) -- (5)
without any further assumptions on $f$. To finish the proof
we have to show the equivalent conditions (1) -- (5) imply (6).
This follows from Decent Spaces, Lemma
\ref{decent-spaces-lemma-finite-over-dense-open}.
\end{proof}
\begin{definition}
\label{definition-degree}
Let $S$ be a scheme.
Let $X$ and $Y$ be integral algebraic spaces over $S$.
Let $f : X \to Y$ be locally of finite type and dominant.
Assume any of the equivalent conditions (1) -- (5) of
Lemma \ref{lemma-finite-degree}. Let $x \in |X|$ and $y \in |Y|$
be the generic points. Then the positive integer
$$
\text{deg}(X/Y) = [\kappa(x) : \kappa(y)]
$$
is called the {\it degree of $X$ over $Y$}.
\end{definition}
\noindent
Here is a lemma about normal integral algebraic spaces.
\begin{lemma}
\label{lemma-normal-integral-cover-by-affines}
Let $S$ be a scheme. Let $X$ be a normal integral algebraic space over $S$.
For every $x \in |X|$ there exists a normal integral affine scheme $U$
and an \'etale morphism $U \to X$ such that $x$ is in the image.
\end{lemma}
\begin{proof}
Choose an affine scheme $U$ and an \'etale morphism $U \to X$ such that
$x$ is in the image. Let $u_i$, $i \in I$ be the generic points of irreducible
components of $U$. Then each $u_i$ maps to the generic point of $X$
(Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-generic-points}). By
our definition of a decent space
(Decent Spaces, Definition \ref{decent-spaces-definition-very-reasonable}),
we see that $I$ is finite. Hence $U = \Spec(A)$ where $A$ is a normal ring
with finitely many minimal primes.
Thus $A = \prod_{i \in I} A_i$ is a product of normal domains by
Algebra, Lemma \ref{algebra-lemma-characterize-reduced-ring-normal}.
Then $U = \coprod U_i$ with $U_i = \Spec(A_i)$ and $x$ is in the image of
$U_i \to X$ for some $i$. This proves the lemma.
\end{proof}
\begin{lemma}
\label{lemma-normal-integral-sections}
Let $S$ be a scheme. Let $X$ be a normal integral algebraic space over $S$.
Then $\Gamma(X, \mathcal{O}_X)$ is a normal domain.
\end{lemma}
\begin{proof}
Set $R = \Gamma(X, \mathcal{O}_X)$. Then $R$ is a domain by
Lemma \ref{lemma-integral-sections}.
Let $f = a/b$ be an element of the fraction field of $R$
which is integral over $R$.
For any $U \to X$ \'etale with $U$ a scheme there is at most one
$f_U \in \Gamma(U, \mathcal{O}_U)$ with $b|_U f_U = a|_U$.
Namely, $U$ is reduced and the generic points of $U$ map to
the generic point of $X$ which implies that $b|_U$ is a
nonzerodivisor.
For every $x \in |X|$ we choose $U \to X$ as in
Lemma \ref{lemma-normal-integral-cover-by-affines}.
Then there is a unique $f_U \in \Gamma(U, \mathcal{O}_U)$
with $b|_U f_U = a|_U$ because
$\Gamma(U, \mathcal{O}_U)$ is a normal domain by
Properties, Lemma \ref{properties-lemma-normal-integral-sections}.
By the uniqueness mentioned above these $f_U$
glue and define a global section $f$ of the structure
sheaf, i.e., of $R$.
\end{proof}
\section{Modifications and alterations}
\label{section-modifications-alterations}
\noindent
Using our notion of an integral algebraic space we can define a modification
as follows.
\begin{definition}
\label{definition-modification}
Let $S$ be a scheme. Let $X$ be an integral algebraic space over $S$. A
{\it modification of $X$} is a birational proper morphism
$f : X' \to X$ of algebraic spaces over $S$ with $X'$ integral.
\end{definition}
\noindent
For birational morphisms of algebraic spaces, see
Decent Spaces, Definition \ref{decent-spaces-definition-birational}.
\begin{lemma}
\label{lemma-modification-iso-over-open}
Let $f : X' \to X$ be a modification as in
Definition \ref{definition-modification}.
There exists a nonempty open $U \subset X$ such that $f^{-1}(U) \to U$
is an isomorphism.
\end{lemma}
\begin{proof}
By
Lemma \ref{lemma-finite-degree} there exists a nonempty $U \subset X$ such
that $f^{-1}(U) \to U$ is finite. By generic flatness
(Morphisms of Spaces, Proposition
\ref{spaces-morphisms-proposition-generic-flatness-reduced})
we may assume $f^{-1}(U) \to U$ is flat and of finite presentation.
So $f^{-1}(U) \to U$ is finite locally free
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-finite-flat}).
Since $f$ is birational, the degree of $X'$ over $X$ is $1$.
Hence $f^{-1}(U) \to U$ is finite locally free of degree $1$,
in other words it is an isomorphism.
\end{proof}
\begin{definition}
\label{definition-alteration}
Let $S$ be a scheme. Let $X$ be an integral algebraic space over $S$.
An {\it alteration of $X$} is a proper dominant morphism $f : Y \to X$
of algebraic spaces over $S$ with $Y$ integral such that $f^{-1}(U) \to U$
is finite for some nonempty open $U \subset X$.
\end{definition}
\noindent
If $f : Y \to X$ is a dominant and proper morphism between integral
algebraic spaces, then it is an alteration as soon as the induced
extension of residue fields in generic points is finite. Here is the
precise statement.
\begin{lemma}
\label{lemma-alteration-generically-finite}
Let $S$ be a scheme. Let $f : X \to Y$ be a proper dominant morphism of
integral algebraic spaces over $S$. Then $f$ is an alteration
if and only if any of the equivalent conditions (1) -- (6) of
Lemma \ref{lemma-finite-degree} hold.
\end{lemma}
\begin{proof}
Immediate consequence of the lemma referenced in the statement.
\end{proof}
\section{Schematic locus}
\label{section-schematic}
\noindent
We have already proven a number of results on the schematic locus
of an algebraic space. Here is a list of references:
\begin{enumerate}
\item Properties of Spaces, Sections
\ref{spaces-properties-section-schematic} and
\ref{spaces-properties-section-getting-a-scheme},
\item Decent Spaces, Section \ref{decent-spaces-section-schematic},
\item Properties of Spaces, Lemma
\ref{spaces-properties-lemma-point-like-spaces}
$\Leftarrow$
Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-point-like-spaces}
$\Leftarrow$
Decent Spaces, Lemma \ref{decent-spaces-lemma-when-field},
\item Limits of Spaces, Section \ref{spaces-limits-section-affine}, and
\item Limits of Spaces, Section \ref{spaces-limits-section-representable}.
\end{enumerate}
There are some cases where certain types of morphisms of algebraic spaces
are automatically representable, for example
separated, locally quasi-finite morphisms (Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-locally-quasi-finite-separated-representable}),
and flat monomorphisms (More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-flat-case})
In Section \ref{section-schematic-and-field-extension}
we will study what happens with the schematic
locus under extension of base field.
\begin{lemma}
\label{lemma-locally-finite-type-dim-zero}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
In each of the following cases $X$ is a scheme:
\begin{enumerate}
\item $X$ is quasi-compact and quasi-separated and $\dim(X) = 0$,
\item $X$ is locally of finite type over a field $k$ and $\dim(X) = 0$,
\item $X$ is Noetherian and $\dim(X) = 0$, and
\item add more here.
\end{enumerate}
\end{lemma}
\begin{proof}
Cases (2) and (3) follow immediately from case (1) but we will give a separate
proofs of (2) and (3) as these proofs use significantly less theory.
\medskip\noindent
Proof of (3). Let $U$ be an affine scheme and let $U \to X$ be an
\'etale morphism. Set $R = U \times_X U$. The two projection
morphisms $s, t : R \to U$ are \'etale morphisms of schemes. By
Properties of Spaces, Definition \ref{spaces-properties-definition-dimension}
we see that $\dim(U) = 0$ and $\dim(R) = 0$.
Since $R$ is a locally Noetherian scheme of dimension $0$,
we see that $R$ is a disjoint union of spectra of
Artinian local rings
(Properties, Lemma \ref{properties-lemma-locally-Noetherian-dimension-0}).
Since we assumed that $X$ is Noetherian (so quasi-separated) we
conclude that $R$ is quasi-compact. Hence $R$ is an affine scheme
(use Schemes, Lemma \ref{schemes-lemma-disjoint-union-affines}).
The \'etale morphisms $s, t : R \to U$ induce finite residue field
extensions. Hence $s$ and $t$ are finite by
Algebra, Lemma
\ref{algebra-lemma-essentially-of-finite-type-into-artinian-local}
(small detail omitted).
Thus
Groupoids, Proposition \ref{groupoids-proposition-finite-flat-equivalence}
shows that $X = U/R$ is an affine scheme.
\medskip\noindent
Proof of (2) -- almost identical to the proof of (4).
Let $U$ be an affine scheme and let $U \to X$ be an \'etale morphism.
Set $R = U \times_X U$. The two projection morphisms
$s, t : R \to U$ are \'etale morphisms of schemes. By
Properties of Spaces, Definition \ref{spaces-properties-definition-dimension}
we see that $\dim(U) = 0$ and similarly $\dim(R) = 0$.
On the other hand, the morphism $U \to \Spec(k)$ is locally of finite
type as the composition of the \'etale morphism $U \to X$ and
$X \to \Spec(k)$, see
Morphisms of Spaces,
Lemmas \ref{spaces-morphisms-lemma-composition-finite-type} and
\ref{spaces-morphisms-lemma-etale-locally-finite-type}.
Similarly, $R \to \Spec(k)$ is locally of finite type.
Hence by
Varieties, Lemma \ref{varieties-lemma-algebraic-scheme-dim-0}
we see that $U$ and $R$ are disjoint unions of spectra of
local Artinian $k$-algebras finite over $k$. The same thing
is therefore true of $U \times_{\Spec(k)} U$. As
$$
R = U \times_X U \longrightarrow U \times_{\Spec(k)} U
$$
is a monomorphism, we see that $R$ is a finite(!) union of spectra of
finite $k$-algebras. It follows that $R$ is affine, see
Schemes, Lemma \ref{schemes-lemma-disjoint-union-affines}.
Applying
Varieties, Lemma \ref{varieties-lemma-algebraic-scheme-dim-0}
once more we see that $R$ is finite over $k$. Hence $s, t$
are finite, see
Morphisms, Lemma \ref{morphisms-lemma-finite-permanence}.
Thus
Groupoids, Proposition \ref{groupoids-proposition-finite-flat-equivalence}
shows that the open subspace $U/R$ of $X$ is an affine scheme. Since the
schematic locus of $X$ is an open subspace (see
Properties of Spaces, Lemma \ref{spaces-properties-lemma-subscheme}),
and since $U \to X$ was an arbitrary \'etale morphism from an affine scheme
we conclude that $X$ is a scheme.
\medskip\noindent
Proof of (1). By Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-vanishing-above-dimension}
we have vanishing of higher cohomology groups for all
quasi-coherent sheaves $\mathcal{F}$ on $X$. Hence $X$
is affine (in particular a scheme) by
Cohomology of Spaces, Proposition
\ref{spaces-cohomology-proposition-vanishing-affine}.
\end{proof}
\noindent
The following lemma tells us that a quasi-separated algebraic space
is a scheme away from codimension $1$.
\begin{lemma}
\label{lemma-generic-point-in-schematic-locus}
Let $S$ be a scheme. Let $X$ be a quasi-separated algebraic space over $S$.
Let $x \in |X|$. The following are equivalent
\begin{enumerate}
\item $x$ is a point of codimension $0$ on $X$,
\item the local ring of $X$ at $x$ has dimension $0$, and
\item $x$ is a generic point of an irreducible component of $|X|$.
\end{enumerate}
If true, then there exists an open subspace of $X$
containing $x$ which is a scheme.
\end{lemma}
\begin{proof}
The equivalence of (1), (2), and (3) follows from
Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-generic-points}
and the fact that a quasi-separated algebraic space is decent
(Decent Spaces, Section \ref{decent-spaces-section-reasonable-decent}).
However in the next paragraph we will give a more elementary proof of the
equivalence.
\medskip\noindent
Note that (1) and (2) are equivalent by definition
(Properties of Spaces, Definition
\ref{spaces-properties-definition-dimension-local-ring}).
To prove the equivalence of (1) and (3) we may assume $X$ is quasi-compact.
Choose
$$
\emptyset = U_{n + 1} \subset
U_n \subset U_{n - 1} \subset \ldots \subset U_1 = X
$$
and $f_i : V_i \to U_i$ as in Decent Spaces, Lemma
\ref{decent-spaces-lemma-filter-quasi-compact-quasi-separated}.
Say $x \in U_i$, $x \not \in U_{i + 1}$. Then $x = f_i(y)$ for
a unique $y \in V_i$. If (1) holds, then $y$ is a generic point of
an irreducible component of $V_i$ (Properties of Spaces, Lemma
\ref{spaces-properties-lemma-codimension-0-points}).
Since $f_i^{-1}(U_{i + 1})$ is a quasi-compact open of $V_i$
not containing $y$, there is an open neighbourhood $W \subset V_i$
of $y$ disjoint from $f_i^{-1}(V_i)$
(see
Properties, Lemma \ref{properties-lemma-generic-point-in-constructible}
or more simply Algebra, Lemma
\ref{algebra-lemma-standard-open-containing-maximal-point}).
Then $f_i|_W : W \to X$ is an isomorphism onto its image and hence
$x = f_i(y)$ is a generic point of $|X|$. Conversely, assume (3) holds.
Then $f_i$ maps $\overline{\{y\}}$ onto the irreducible component
$\overline{\{x\}}$ of $|U_i|$. Since $|f_i|$ is bijective over
$\overline{\{x\}}$, it follows that $\overline{\{y\}}$
is an irreducible component of $U_i$. Thus $x$ is a point of
codimension $0$.
\medskip\noindent
The final statement of the lemma is
Properties of Spaces, Proposition
\ref{spaces-properties-proposition-locally-quasi-separated-open-dense-scheme}.
\end{proof}
\noindent
The following lemma says that a separated locally Noetherian algebraic
space is a scheme in codimension $1$, i.e., away from codimension $2$.
\begin{lemma}
\label{lemma-codim-1-point-in-schematic-locus}
\begin{slogan}
Separated algebraic spaces are schemes in codimension 1.
\end{slogan}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $x \in |X|$. If $X$ is separated, locally Noetherian, and
the dimension of the local ring of $X$ at $x$ is $\leq 1$
(Properties of Spaces, Definition
\ref{spaces-properties-definition-dimension-local-ring}),
then there exists an open subspace of $X$ containing $x$ which is a scheme.
\end{lemma}
\begin{proof}
(Please see the remark below for a different approach avoiding the material on
finite groupoids.) We can replace $X$ by an quasi-compact neighbourhood of
$x$, hence we may assume $X$ is quasi-compact, separated, and Noetherian.
There exists a scheme $U$ and a finite surjective morphism $U \to X$,
see Limits of Spaces, Proposition
\ref{spaces-limits-proposition-there-is-a-scheme-finite-over}.
Let $R = U \times_X U$. Then $j : R \to U \times_S U$ is an equivalence
relation and we obtain a groupoid scheme $(U, R, s, t, c)$ over $S$
with $s, t$ finite and $U$ Noetherian and separated.
Let $\{u_1, \ldots, u_n\} \subset U$ be the set of points mapping to $x$.
Then $\dim(\mathcal{O}_{U, u_i}) \leq 1$ by
Decent Spaces, Lemma
\ref{decent-spaces-lemma-dimension-local-ring-quasi-finite}.
\medskip\noindent
By More on Groupoids, Lemma
\ref{more-groupoids-lemma-find-affine-codimension-1}
there exists an $R$-invariant affine open $W \subset U$ containing
the orbit $\{u_1, \ldots, u_n\}$. Since $U \to X$ is finite surjective
the continuous map $|U| \to |X|$ is closed surjective, hence
submersive by Topology, Lemma
\ref{topology-lemma-closed-morphism-quotient-topology}.
Thus $f(W)$ is open and there is an open subspace $X' \subset X$
with $f : W \to X'$ a surjective finite morphism.
Then $X'$ is an affine scheme by
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-image-affine-finite-morphism-affine-Noetherian}
and the proof is finished.
\end{proof}
\begin{remark}
\label{remark-alternate-proof-scheme-codim-1}
Here is a sketch of a proof of
Lemma \ref{lemma-codim-1-point-in-schematic-locus}
which avoids using
More on Groupoids, Lemma
\ref{more-groupoids-lemma-find-affine-codimension-1}.
\medskip\noindent
Step 1. We may assume $X$ is a reduced Noetherian separated algebraic space
(for example by Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-image-affine-finite-morphism-affine-Noetherian}
or by
Limits of Spaces, Lemma \ref{spaces-limits-lemma-reduction-scheme})
and we may choose a finite surjective morphism
$Y \to X$ where $Y$ is a Noetherian scheme (by
Limits of Spaces, Proposition
\ref{spaces-limits-proposition-there-is-a-scheme-finite-over}).
\medskip\noindent
Step 2. After replacing $X$ by an open neighbourhood of $x$, there
exists a birational finite morphism $X' \to X$ and a closed subscheme
$Y' \subset X' \times_X Y$ such that $Y' \to X'$ is surjective
finite locally free. Namely, because $X$ is reduced there is a dense
open subspace $U \subset X$ over which $Y$ is flat (Morphisms of Spaces,
Proposition \ref{spaces-morphisms-proposition-generic-flatness-reduced}).
Then we can choose a $U$-admissible blow up $b : \tilde X \to X$ such
that the strict transform $\tilde Y$ of $Y$ is flat over $\tilde X$, see
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-flat-after-blowing-up}.
(An alternative is to use Hilbert schemes if one wants to avoid using
the result on blow ups).
Then we let $X' \subset \tilde X$ be the scheme theoretic
closure of $b^{-1}(U)$ and $Y' = X' \times_{\tilde X} \tilde Y$.
Since $x$ is a codimension $1$ point, we see that $X' \to X$ is finite over a
neighbourhood of $x$ (Lemma \ref{lemma-finite-in-codim-1}).
\medskip\noindent
Step 3. After shrinking $X$ to a smaller neighbourhood of $x$ we get that
$X'$ is a scheme. This holds because $Y'$ is a scheme and $Y' \to X'$
being finite locally free and because every finite set of codimension $1$
points of $Y'$ is contained in an affine open. Use
Properties of Spaces, Proposition
\ref{spaces-properties-proposition-finite-flat-equivalence-global}
and
Varieties, Proposition
\ref{varieties-proposition-finite-set-of-points-of-codim-1-in-affine}.
\medskip\noindent
Step 4. There exists an affine open $W' \subset X'$ containing all points
lying over $x$ which is the inverse image of an open subspace of $X$.
To prove this let $Z \subset X$ be the closure of the set of points
where $X' \to X$ is not an isomorphism. We may assume $x \in Z$ otherwise
we are already done. Then $x$ is a generic point of an irreducible
component of $Z$ and after shrinking $X$ we may assume $Z$ is an affine scheme
(Lemma \ref{lemma-generic-point-in-schematic-locus}).
Then the inverse image $Z' \subset X'$ is an affine scheme as well.
Say $x_1, \ldots, x_n \in Z'$ are the points mapping to $x$.
Then we can find an affine open $W'$ in $X'$ whose intersection with
$Z'$ is the inverse image of a principal open of $Z$ containing $x$.
Namely, we first pick an affine open $W' \subset X'$ containing
$x_1, \ldots, x_n$ using Varieties, Proposition
\ref{varieties-proposition-finite-set-of-points-of-codim-1-in-affine}.
Then we pick a principal open $D(f) \subset Z$ containing $x$
whose inverse image $D(f|_{Z'})$ is contained in $W' \cap Z'$.
Then we pick $f' \in \Gamma(W', \mathcal{O}_{W'})$ restricting
to $f|_{Z'}$ and we replace $W'$ by $D(f') \subset W'$.
Since $X' \to X$ is an isomorphism away from $Z' \to Z$ the choice
of $W'$ guarantees that the image $W \subset X$ of $W'$ is open
with inverse image $W'$ in $X'$.
\medskip\noindent
Step 5. Then $W' \to W$ is a finite surjective morphism and $W$ is a scheme by
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-image-affine-finite-morphism-affine-Noetherian}
and the proof is complete.
\end{remark}
\section{Schematic locus and field extension}
\label{section-schematic-and-field-extension}
\noindent
It can happen that a nonrepresentable algebraic space over a field $k$
becomes representable (i.e., a scheme) after base change to an extension
of $k$. See Spaces, Example \ref{spaces-example-non-representable-descent}.
In this section we address this issue.
\begin{lemma}
\label{lemma-scheme-after-purely-inseparable-base-change}
Let $k$ be a field. Let $X$ be an algebraic space over $k$.
If there exists a purely inseparable field extension $k \subset k'$
such that $X_{k'}$ is a scheme, then $X$ is a scheme.
\end{lemma}
\begin{proof}
The morphism $X_{k'} \to X$ is integral, surjective, and
universally injective. Hence this lemma follows from
Limits of Spaces, Lemma
\ref{spaces-limits-lemma-integral-universally-bijective-scheme}.
\end{proof}
\begin{lemma}
\label{lemma-when-scheme-after-base-change}
Let $k$ be a field with algebraic closure $\overline{k}$.
Let $X$ be a quasi-separated algebraic space over $k$.
\begin{enumerate}
\item If there exists a field extension $k \subset K$ such that
$X_K$ is a scheme, then $X_{\overline{k}}$ is a scheme.
\item If $X$ is quasi-compact and there exists a field extension
$k \subset K$ such that $X_K$ is a scheme, then $X_{k'}$
is a scheme for some finite separable extension $k'$ of $k$.
\end{enumerate}
\end{lemma}
\begin{proof}
Since every algebraic space is the union of its quasi-compact open
subspaces, we see that the first part of the lemma follows from
the second part (some details omitted). Thus we assume $X$ is quasi-compact
and we assume given an extension $k \subset K$ with $K_K$ representable.
Write $K = \bigcup A$ as the colimit of finitely generated $k$-subalgebras
$A$. By Limits of Spaces, Lemma \ref{spaces-limits-lemma-limit-is-scheme}
we see that $X_A$ is a scheme for some $A$. Choose a maximal ideal
$\mathfrak m \subset A$. By the Hilbert Nullstellensatz
(Algebra, Theorem \ref{algebra-theorem-nullstellensatz})
the residue field $k' = A/\mathfrak m$ is a finite extension of $k$.
Thus we see that $X_{k'}$ is a scheme. If $k' \supset k$ is not
separable, let $k' \supset k'' \supset k$ be the subextension
found in Fields, Lemma \ref{fields-lemma-separable-first}.
Since $k'/k''$ is purely inseparable, by
Lemma \ref{lemma-scheme-after-purely-inseparable-base-change}
the algebraic space $X_{k''}$ is a scheme. Since $k''|k$ is separable
the proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-base-change-by-Galois}
Let $k \subset k'$ be a finite Galois extension with Galois group $G$.
Let $X$ be an algebraic space over $k$. Then $G$ acts freely on the
algebraic space $X_{k'}$ and $X = X_{k'}/G$ in the sense of
Properties of Spaces, Lemma \ref{spaces-properties-lemma-quotient}.
\end{lemma}
\begin{proof}
Omitted. Hints: First show that $\Spec(k) = \Spec(k')/G$.
Then use compatinility of taking quotients with base change.
\end{proof}
\begin{lemma}
\label{lemma-when-quotient-scheme-at-point}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$ and
let $G$ be a finite group acting freely on $X$. Set $Y = X/G$ as
in Properties of Spaces, Lemma \ref{spaces-properties-lemma-quotient}.
For $y \in |Y|$ the following are equivalent
\begin{enumerate}
\item $y$ is in the schematic locus of $Y$, and
\item there exists an affine open $U \subset X$
containing the preimage of $y$.
\end{enumerate}
\end{lemma}
\begin{proof}
It follows from the construction of $Y = X/G$ in
Properties of Spaces, Lemma \ref{spaces-properties-lemma-quotient}
that the morphism $X \to Y$ is surjective and \'etale.
Of course we have $X \times_Y X = X \times G$ hence the morphism
$X \to Y$ is even finite \'etale. It is also surjective.
Thus the lemma follows from
Decent Spaces, Lemma \ref{decent-spaces-lemma-when-quotient-scheme-at-point}.
\end{proof}
\begin{lemma}
\label{lemma-scheme-after-purely-transcendental-base-change}
Let $k$ be a field. Let $X$ be a quasi-separated
algebraic space over $k$. If there exists a purely transcendental
field extension $k \subset K$ such that $X_K$ is a scheme, then
$X$ is a scheme.
\end{lemma}
\begin{proof}
Since every algebraic space is the union of its quasi-compact open
subspaces, we may assume $X$ is quasi-compact (some details omitted).
Recall (Fields, Definition \ref{fields-definition-transcendence})
that the assumption on the extension $K/k$ signifies that
$K$ is the fraction field of a polynomial ring (in possibly infinitely
many variables) over $k$. Thus $K = \bigcup A$ is the union of subalgebras
each of which is a localization of a finite polynomial algebra over $k$.
By Limits of Spaces, Lemma \ref{spaces-limits-lemma-limit-is-scheme}
we see that $X_A$ is a scheme for some $A$. Write
$$
A = k[x_1, \ldots, x_n][1/f]
$$
for some nonzero $f \in k[x_1, \ldots, x_n]$.
\medskip\noindent
If $k$ is infinite then we can finish the proof as follows: choose
$a_1, \ldots, a_n \in k$ with $f(a_1, \ldots, a_n) \not = 0$.
Then $(a_1, \ldots, a_n)$ define an $k$-algebra map $A \to k$
mapping $x_i$ to $a_i$ and $1/f$ to $1/f(a_1, \ldots, a_n)$.
Thus the base change $X_A \times_{\Spec(A)} \Spec(k) \cong X$ is a
scheme as desired.
\medskip\noindent
In this paragraph we finish the proof in case $k$ is finite. In this
case we write $X = \lim X_i$ with $X_i$ of finite presentation over $k$
and with affine transition morphisms
(Limits of Spaces, Lemma \ref{spaces-limits-lemma-relative-approximation}).
Using Limits of Spaces, Lemma \ref{spaces-limits-lemma-limit-is-scheme}
we see that $X_{i, A}$ is a scheme for some $i$. Thus we may assume
$X \to \Spec(k)$ is of finite presentation. Let $x \in |X|$ be a closed
point. We may represent $x$ by a closed immersion
$\Spec(\kappa) \to X$
(Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-space-closed-point}).
Then $\Spec(\kappa) \to \Spec(k)$ is of finite type, hence $\kappa$
is a finite extension of $k$ (by the Hilbert Nullstellensatz, see
Algebra, Theorem \ref{algebra-theorem-nullstellensatz};
some details omitted). Say $[\kappa : k] = d$. Choose an integer
$n \gg 0$ prime to $d$ and let $k \subset k'$ be the extension
of degree $n$. Then $k'/k$ is Galois with $G = \text{Aut}(k'/k)$
cyclic of order $n$. If $n$ is large enough there will be $k$-algebra
homomorphism $A \to k'$ by the same reason as above.
Then $X_{k'}$ is a scheme and $X = X_{k'}/G$
(Lemma \ref{lemma-base-change-by-Galois}).
On the other hand, since $n$ and $d$ are relatively prime we see that
$$
\Spec(\kappa) \times_{X} X_{k'} =
\Spec(\kappa) \times_{\Spec(k)} \Spec(k') =
\Spec(\kappa \otimes_k k')
$$
is the spectrum of a field. In other words, the fibre of $X_{k'} \to X$
over $x$ consists of a single point. Thus by
Lemma \ref{lemma-when-quotient-scheme-at-point}
we see that $x$ is in the schematic locus of $X$ as desired.
\end{proof}
\begin{remark}
\label{remark-when-does-the-argument-work}
Let $k$ be finite field. Let $K \supset k$ be a geometrically
irreducible field extension. Then $K$ is the limit of geometrically
irreducible finite type $k$-algebras $A$. Given $A$ the estimates
of Lang and Weil \cite{LW}, show that for $n \gg 0$ there exists
an $k$-algebra homomorphism $A \to k'$ with $k'/k$ of degree $n$.
Analyzing the argument given in the proof of
Lemma \ref{lemma-scheme-after-purely-transcendental-base-change}
we see that if $X$ is a quasi-separated algebraic space over $k$
and $X_K$ is a scheme, then $X$ is a scheme. If we ever need this
result we will precisely formulate it and prove it here.
\end{remark}
\begin{lemma}
\label{lemma-scheme-over-algebraic-closure-enough-affines}
Let $k$ be a field with algebraic closure $\overline{k}$. Let $X$
be an algebraic space over $k$ such that
\begin{enumerate}
\item $X$ is decent and locally of finite type over $k$,
\item $X_{\overline{k}}$ is a scheme, and
\item any finite set of $\overline{k}$-rational points of $X_{\overline{k}}$
are contained in an affine.
\end{enumerate}
Then $X$ is a scheme.
\end{lemma}
\begin{proof}
If $k \subset K$ is an extension, then the base change $X_K$ is
decent (Decent Spaces, Lemma
\ref{decent-spaces-lemma-representable-named-properties})
and locally of finite type
over $K$ (Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-base-change-finite-type}).
By Lemma \ref{lemma-scheme-after-purely-inseparable-base-change}
it suffices to prove that $X$ becomes a scheme after base change to
the perfection of $k$, hence we may assume $k$ is a perfect field
(this step isn't strictly necessary, but makes the other arguments
easier to think about).
By covering $X$ by quasi-compact opens we see that it suffices to prove
the lemma in case $X$ is quasi-compact (small detail omitted).
In this case $|X|$ is a sober topological space
(Decent Spaces, Proposition
\ref{decent-spaces-proposition-reasonable-sober}).
Hence it suffices to show that every closed point in $|X|$
is contained in the schematic locus of $X$
(use Properties of Spaces, Lemma \ref{spaces-properties-lemma-subscheme} and
Topology, Lemma \ref{topology-lemma-quasi-compact-closed-point}).
\medskip\noindent
Let $x \in |X|$ be a closed point. By Decent Spaces, Lemma
\ref{decent-spaces-lemma-decent-space-closed-point}
we can find a closed immersion $\Spec(l) \to X$ representing $x$.
Then $\Spec(l) \to \Spec(k)$ is of finite type (Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-composition-finite-type}) and we
conclude that $l$ is a finite extension of $k$
by the Hilbert Nullstellensatz (Algebra, Theorem
\ref{algebra-theorem-nullstellensatz}). It is separable because
$k$ is perfect. Thus the scheme
$$
\Spec(l) \times_X X_{\overline{k}} =
\Spec(l) \times_{\Spec(k)} \Spec(\overline{k}) =
\Spec(l \otimes_k \overline{k})
$$
is the disjoint union of a finite number of $\overline{k}$-rational points.
By assumption (3) we can find an affine open $W \subset X_{\overline{k}}$
containing these points.
\medskip\noindent
By Lemma \ref{lemma-when-scheme-after-base-change} we see that $X_{k'}$
is a scheme for some finite extension $k'/k$. After enlarging
$k'$ we may assume that there exists an affine open $U' \subset X_{k'}$
whose base change to $\overline{k}$ recovers $W$