-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathrun_demo.py
62 lines (48 loc) · 1.9 KB
/
run_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# coding:utf-8
import os
import argparse
import time
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from util.util import visualize
from model import MFNet
from train import n_class, model_dir
def main():
model = eval(args.model_name)(n_class=n_class)
if args.gpu >= 0: model.cuda(args.gpu)
if os.path.exists(final_model_file):
model.load_state_dict(torch.load(final_model_file, map_location={'cuda:0':'cuda:1'}))
elif os.path.exists(checkpoint_model_file):
model.load_state_dict(torch.load(checkpoint_model_file, map_location={'cuda:0':'cuda:1'}))
else:
raise Exception('| model file do not exists in %s' % model_dir)
print('| model loaded!')
files = os.listdir('image')
images = []
fpath = []
for file in files:
if file[-3:] != 'png': continue
fpath.append('image/'+file)
images.append( np.asarray(Image.open('image/'+file)) )
images = np.asarray(images, dtype=np.float32).transpose((0,3,1,2))/255.
images = Variable(torch.tensor(images))
if args.gpu >= 0: images = images.cuda(args.gpu)
model.eval()
with torch.no_grad():
logits = model(images)
predictions = logits.argmax(1)
visualize(fpath, predictions)
print('| prediction files have been saved in image/')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run MFNet demo with pytorch')
parser.add_argument('--model_name', '-M', type=str, default='MFNet')
parser.add_argument('--gpu', '-G', type=int, default=0)
args = parser.parse_args()
model_dir = os.path.join(model_dir, args.model_name)
checkpoint_model_file = os.path.join(model_dir, 'tmp.pth')
final_model_file = os.path.join(model_dir, 'final.pth')
print('| running %s demo on GPU #%d with pytorch' % (args.model_name, args.gpu))
main()