-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
625 lines (494 loc) · 30.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# Copyright (C) 2019 Jin Han Lee
#
# This file is a part of BTS.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>
import time
import argparse
import datetime
import sys
import os
from datetime import datetime
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
from tensorboardX import SummaryWriter
# import matplotlib
# import matplotlib.cm
from tqdm import tqdm
from models.model import CaFNet
from dataloaders.cafnet_dataloader import *
from models.losses import *
def convert_arg_line_to_args(arg_line):
for arg in arg_line.split():
if not arg.strip():
continue
yield arg
parser = argparse.ArgumentParser(description='CaFNet PyTorch implementation.', fromfile_prefix_chars='@')
parser.convert_arg_line_to_args = convert_arg_line_to_args
parser.add_argument('--mode', type=str, help='train or test', default='train')
parser.add_argument('--model_name', type=str, help='model name', default='CaFNet')
parser.add_argument('--main_path', type=str, help='main path of data', required=True)
parser.add_argument('--train_image_path', type=str, help='path of training image', required=True)
parser.add_argument('--train_radar_path', type=str, help='path of training radar', required=True)
parser.add_argument('--train_ground_truth_path', type=str, help='path of D', required=True)
parser.add_argument('--train_box_pos_path', type=str, help='path of boxes', required=True)
parser.add_argument('--train_ground_truth_nointer_path', type=str, help='path of D_acc', required=True)
parser.add_argument('--train_lidar_path', type=str, help='path of single lidar depth', required=True)
parser.add_argument('--test_image_path', type=str, help='path of testing image', required=True)
parser.add_argument('--test_radar_path', type=str, help='path of testing radar', required=True)
parser.add_argument('--test_ground_truth_path', type=str, help='path of testing ground truth', required=True)
parser.add_argument('--encoder', type=str, help='type of image encoder', default='resnet34_bts')
parser.add_argument('--encoder_radar', type=str, help='type of encoder of radar channels', default='resnet18')
parser.add_argument('--radar_input_channels', type=int, help='number of input radar channels', default=5)
# Dataset
parser.add_argument('--input_height', type=int, help='input height', default=352)
parser.add_argument('--input_width', type=int, help='input width', default=704)
parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=100)
parser.add_argument('--max_dist_correspondence', type=float, help='Max distance to consider two points correspondence', default=0.5)
parser.add_argument('--patch_size', type=int, nargs='+', default=[150, 50], help='Height, width of input patch')
parser.add_argument('--bts_size', type=int, help='initial num_filters in bts decoder', default=512)
# Log and save
parser.add_argument('--log_directory', type=str, help='directory to save checkpoints and summaries', default='')
parser.add_argument('--checkpoint_path', type=str, help='path to a checkpoint to load', default='')
parser.add_argument('--log_freq', type=int, help='Logging frequency in global steps', default=100)
parser.add_argument('--save_freq', type=int, help='Checkpoint saving frequency in global steps', default=500)
# Training
parser.add_argument('--fix_first_conv_blocks', help='if set, will fix the first two conv blocks', action='store_true')
parser.add_argument('--fix_first_conv_block', help='if set, will fix the first conv block', action='store_true')
parser.add_argument('--bn_no_track_stats', help='if set, will not track running stats in batch norm layers', action='store_true')
parser.add_argument('--weight_decay', type=float, help='weight decay factor for optimization', default=1e-2)
parser.add_argument('--retrain', help='if used with checkpoint_path, will restart training from step zero', action='store_true')
parser.add_argument('--adam_eps', type=float, help='epsilon in Adam optimizer', default=1e-6)
parser.add_argument('--batch_size', type=int, help='batch size', default=4)
parser.add_argument('--num_epochs', type=int, help='number of epochs', default=50)
parser.add_argument('--learning_rate', type=float, help='initial learning rate', default=1e-4)
parser.add_argument('--end_learning_rate', type=float, help='end learning rate', default=-1)
parser.add_argument('--variance_focus', type=float, help='lambda in paper: [0, 1], higher value more focus on minimizing variance of error', default=0.85)
parser.add_argument('--reg_loss', type=str, help='loss function for depth regression - l1/silog', default='l1')
parser.add_argument('--w_smoothness', type=float, help='Weight of local smoothness loss', default=0.00)
# Multi-gpu training
parser.add_argument('--num_threads', type=int, help='number of threads to use for data loading', default=1)
parser.add_argument('--world_size', type=int, help='number of nodes for distributed training', default=1)
parser.add_argument('--rank', type=int, help='node rank for distributed training', default=0)
parser.add_argument('--dist_url', type=str, help='url used to set up distributed training', default='tcp://127.0.0.1:1234')
parser.add_argument('--dist_backend', type=str, help='distributed backend', default='nccl')
parser.add_argument('--gpu', type=int, help='GPU id to use.', default=None)
parser.add_argument('--multiprocessing_distributed', help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training', action='store_true',)
# Online eval
parser.add_argument('--do_online_eval', help='if set, perform online eval in every eval_freq steps', action='store_true')
parser.add_argument('--min_depth_eval', type=float, help='minimum depth for evaluation', default=1e-3)
parser.add_argument('--max_depth_eval', type=float, help='maximum depth for evaluation', default=80)
parser.add_argument('--eval_freq', type=int, help='Online evaluation frequency in global steps', default=500)
parser.add_argument('--eval_summary_directory', type=str, help='output directory for eval summary,'
'if empty outputs to checkpoint folder', default='')
if sys.argv.__len__() == 2:
arg_filename_with_prefix = '@' + sys.argv[1]
args = parser.parse_args([arg_filename_with_prefix])
else:
args = parser.parse_args()
if args.mode == 'train' and not args.checkpoint_path:
from models.bts import *
elif args.mode == 'train' and args.checkpoint_path:
model_dir = os.path.dirname(args.checkpoint_path)
model_name = os.path.basename(model_dir)
import sys
sys.path.append(model_dir)
for key, val in vars(__import__(model_name)).items():
if key.startswith('__') and key.endswith('__'):
continue
vars()[key] = val
inv_normalize = transforms.Normalize(
mean=[-0.485/0.229, -0.456/0.224, -0.406/0.225],
std=[1/0.229, 1/0.224, 1/0.225]
)
eval_metrics = ['silog', 'abs_rel', 'log10', 'rms', 'sq_rel', 'log_rms', 'mae', 'd1', 'd2', 'd3']
def compute_errors(gt, pred):
thresh = np.maximum((gt / pred), (pred / gt))
d1 = (thresh < 1.25).mean()
d2 = (thresh < 1.25 ** 2).mean()
d3 = (thresh < 1.25 ** 3).mean()
mae = np.mean(np.abs(gt - pred))
rms = (gt - pred) ** 2
rms = np.sqrt(rms.mean())
log_rms = (np.log(gt) - np.log(pred)) ** 2
log_rms = np.sqrt(log_rms.mean())
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred) ** 2) / gt)
err = np.log(pred) - np.log(gt)
silog = np.sqrt(np.mean(err ** 2) - np.mean(err) ** 2) * 100
err = np.abs(np.log10(pred) - np.log10(gt))
log10 = np.mean(err)
return [silog, abs_rel, log10, rms, sq_rel, log_rms, mae, d1, d2, d3]
def block_print():
sys.stdout = open(os.devnull, 'w')
def enable_print():
sys.stdout = sys.__stdout__
def get_num_lines(file_path):
f = open(file_path, 'r')
lines = f.readlines()
f.close()
return len(lines)
def colorize(value, vmin=None, vmax=None, cmap='Greys'):
value = value.cpu().numpy()[:, :, :]
value = np.log10(value)
vmin = value.min() if vmin is None else vmin
vmax = value.max() if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin)
else:
value = value*0.
cmapper = matplotlib.cm.get_cmap(cmap)
value = cmapper(value, bytes=True)
img = value[:, :, :3]
return img.transpose((2, 0, 1))
def normalize_result(value, vmin=None, vmax=None):
value = value.cpu().numpy()[0, :, :]
vmin = value.min() if vmin is None else vmin
vmax = value.max() if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin)
else:
value = value * 0.
return np.expand_dims(value, 0)
def set_misc(model):
if args.bn_no_track_stats:
print("Disabling tracking running stats in batch norm layers")
model.apply(bn_init_as_tf)
if args.fix_first_conv_blocks:
if 'resne' in args.encoder:
fixing_layers = ['base_model.conv1', 'base_model.layer1.0', 'base_model.layer1.1', '.bn']
else:
fixing_layers = ['conv0', 'denseblock1.denselayer1', 'denseblock1.denselayer2', 'norm']
print("Fixing first two conv blocks")
elif args.fix_first_conv_block:
if 'resne' in args.encoder:
fixing_layers = ['base_model.conv1', 'base_model.layer1.0', '.bn']
else:
fixing_layers = ['conv0', 'denseblock1.denselayer1', 'norm']
print("Fixing first conv block")
else:
if 'resne' in args.encoder:
fixing_layers = ['base_model.conv1', '.bn']
else:
fixing_layers = ['conv0', 'norm']
print("Fixing first conv layer")
for name, child in model.named_children():
if not 'encoder' in name:
continue
for name2, parameters in child.named_parameters():
# print(name, name2)
if any(x in name2 for x in fixing_layers):
parameters.requires_grad = False
def online_eval(model, dataloader_eval, gpu, ngpus):
eval_measures = torch.zeros(11).cuda(device=gpu)
for _, eval_sample_batched in enumerate(tqdm(dataloader_eval.data)):
with torch.no_grad():
image = torch.autograd.Variable(eval_sample_batched['image'].cuda(gpu, non_blocking=True))
focal = torch.autograd.Variable(eval_sample_batched['focal'].cuda(gpu, non_blocking=True))
gt_depth = eval_sample_batched['depth']
radar = torch.autograd.Variable(eval_sample_batched['radar'].cuda(args.gpu, non_blocking=True))
_, _, _, pred_depth, _, _ = model(image, radar, focal)
pred_depth = pred_depth.cpu().numpy().squeeze()
gt_depth = gt_depth.cpu().numpy().squeeze()
pred_depth[pred_depth < args.min_depth_eval] = args.min_depth_eval
pred_depth[pred_depth > args.max_depth_eval] = args.max_depth_eval
pred_depth[np.isinf(pred_depth)] = args.max_depth_eval
pred_depth[np.isnan(pred_depth)] = args.min_depth_eval
valid_mask = np.logical_and(gt_depth > args.min_depth_eval, gt_depth < args.max_depth_eval)
measures = compute_errors(gt_depth[valid_mask], pred_depth[valid_mask])
eval_measures[:-1] += torch.tensor(measures).cuda(device=gpu)
eval_measures[-1] += 1
if args.multiprocessing_distributed:
group = dist.new_group([i for i in range(ngpus)])
dist.all_reduce(tensor=eval_measures, op=dist.ReduceOp.SUM, group=group)
if not args.multiprocessing_distributed or gpu == 0:
eval_measures_cpu = eval_measures.cpu()
cnt = eval_measures_cpu[-1].item()
eval_measures_cpu /= cnt
print('Computing errors for {} eval samples'.format(int(cnt)))
print("{:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}".format('silog', 'abs_rel', 'log10', 'rms',
'sq_rel', 'log_rms', 'mae', 'd1', 'd2',
'd3'))
for i in range(9):
print('{:7.3f}, '.format(eval_measures_cpu[i]), end='')
print('{:7.3f}'.format(eval_measures_cpu[9]))
return eval_measures_cpu
return None
def main_worker(gpu, ngpus_per_node, args):
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank)
# Create model
model = CaFNet(args)
model.train()
model.decoder.apply(weights_init_xavier)
model.decoder_radar.apply(weights_init_xavier)
set_misc(model)
num_params = sum([np.prod(p.size()) for p in model.parameters()])
print("Total number of parameters: {}".format(num_params))
num_params_update = sum([np.prod(p.shape) for p in model.parameters() if p.requires_grad])
print("Total number of learning parameters: {}".format(num_params_update))
if args.distributed:
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
args.batch_size = int(args.batch_size / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
else:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
else:
model = torch.nn.DataParallel(model)
model.cuda()
if args.distributed:
print("Model Initialized on GPU: {}".format(args.gpu))
else:
print("Model Initialized")
model_pre = CaFNet(args)
model_pre = torch.nn.DataParallel(model_pre)
checkpoint_path = './saved_models/CaFNet/model-435000-best_mae_2.09121'
checkpoint = torch.load(checkpoint_path, map_location='cpu')
global_step = checkpoint['global_step']
model_pre.load_state_dict(checkpoint['model'])
state_dict_model = model.module.state_dict()
state_dict_model_pre = model_pre.module.state_dict()
common_keys = {key: value for key, value in state_dict_model_pre.items() if key in state_dict_model}
state_dict_model.update(common_keys)
model.module.load_state_dict(state_dict_model)
global_step = 0
best_eval_measures_lower_better = torch.zeros(7).cpu() + 1e3
best_eval_measures_higher_better = torch.zeros(3).cpu()
best_eval_steps = np.zeros(10, dtype=np.int32)
# Training parameters
optimizer = torch.optim.AdamW([{'params': model.module.encoder.parameters(), 'weight_decay': args.weight_decay},
{'params': model.module.encoder_radar1.parameters(), 'weight_decay': args.weight_decay},
{'params': model.module.encoder_radar2.parameters(), 'weight_decay': args.weight_decay},
{'params': model.module.decoder_radar.parameters(), 'weight_decay': args.weight_decay}, # previously doesn't have this line
{'params': model.module.decoder.parameters(), 'weight_decay': 0}],
lr=args.learning_rate, eps=args.adam_eps)
model_just_loaded = False
if args.checkpoint_path != '':
if os.path.isfile(args.checkpoint_path):
print("Loading checkpoint '{}'".format(args.checkpoint_path))
if args.gpu is None:
checkpoint = torch.load(args.checkpoint_path)
else:
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.checkpoint_path, map_location=loc)
global_step = checkpoint['global_step']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
try:
best_eval_measures_higher_better = checkpoint['best_eval_measures_higher_better'].cpu()
best_eval_measures_lower_better = checkpoint['best_eval_measures_lower_better'].cpu()
best_eval_steps = checkpoint['best_eval_steps']
except KeyError:
print("Could not load values for online evaluation")
print("Loaded checkpoint '{}' (global_step {})".format(args.checkpoint_path, checkpoint['global_step']))
else:
print("No checkpoint found at '{}'".format(args.checkpoint_path))
model_just_loaded = True
if args.retrain:
global_step = 0
cudnn.benchmark = True
dataloader = CaFNetDataLoader(args, 'train')
dataloader_eval = CaFNetDataLoader(args, 'online_eval')
# Logging
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
writer = SummaryWriter(args.log_directory + '/' + args.model_name + '/summaries', flush_secs=30)
if args.do_online_eval:
if args.eval_summary_directory != '':
eval_summary_path = os.path.join(args.eval_summary_directory, args.model_name)
else:
eval_summary_path = os.path.join(args.log_directory, 'eval')
eval_summary_writer = SummaryWriter(eval_summary_path, flush_secs=30)
if args.reg_loss == 'silog':
loss_depth = silog_loss(variance_focus=args.variance_focus)
elif args.reg_loss == 'l2':
loss_depth = l2_loss()
else:
# default: L1 loss
loss_depth = l1_loss()
bcn = binary_cross_entropy()
smoothness = smoothness_loss_func()
start_time = time.time()
duration = 0
num_log_images = args.batch_size
end_learning_rate = args.end_learning_rate if args.end_learning_rate != -1 else 0.1 * args.learning_rate
# var_sum = [var.sum() for var in model.parameters() if var.requires_grad]
# var_cnt = len(var_sum)
# var_sum = np.sum(var_sum)
# print("Initial variables' sum: {:.3f}, avg: {:.3f}".format(var_sum, var_sum/var_cnt))
steps_per_epoch = len(dataloader.data)
num_total_steps = args.num_epochs * steps_per_epoch
epoch = global_step // steps_per_epoch
while epoch < args.num_epochs:
if args.distributed:
dataloader.train_sampler.set_epoch(epoch)
for step, sample_batched in enumerate(dataloader.data):
optimizer.zero_grad()
before_op_time = time.time()
image = torch.autograd.Variable(sample_batched['image'].cuda(args.gpu, non_blocking=True))
focal = torch.autograd.Variable(sample_batched['focal'].cuda(args.gpu, non_blocking=True))
depth_gt = torch.autograd.Variable(sample_batched['depth'].cuda(args.gpu, non_blocking=True))
nointer_depth_gt = sample_batched['nointer_depth'].cuda(args.gpu, non_blocking=True)
single_depth_gt = sample_batched['lidar'].cuda(args.gpu, non_blocking=True)
radar = torch.autograd.Variable(sample_batched['radar'].cuda(args.gpu, non_blocking=True))
box_pos = torch.autograd.Variable(sample_batched['box_pos'].cuda(args.gpu, non_blocking=True))
radar_gt = torch.autograd.Variable(sample_batched['radar_gt'].cuda(args.gpu, non_blocking=True))
# feat_T, radar_feat_T, depth_T, final_depth_T, rad_confidence_T, rad_depth_T
_, _, _, depth_est, rad_confidence, radar_depth = model(image, radar, focal)
mask = depth_gt > 0.01
mask_single = single_depth_gt > 0.01
loss_d = loss_depth.forward(depth_est, depth_gt, mask.to(torch.bool)) + \
loss_depth.forward(depth_est, single_depth_gt, mask_single.to(torch.bool))
loss_d_rad = loss_depth.forward(radar_depth, depth_gt, mask.to(torch.bool))
if args.w_smoothness > 0.00:
loss_smoothness = smoothness.forward(depth_est, image)
loss_smoothness = loss_smoothness * args.w_smoothness
else:
loss_smoothness = 0.0
loss_confidence = bcn.forward(rad_confidence, radar_gt, mask.to(torch.bool))
loss = loss_d + 1.0*loss_confidence + 0.5*loss_d_rad + loss_smoothness
loss.backward()
for param_group in optimizer.param_groups:
current_lr = (args.learning_rate - end_learning_rate) * (1 - global_step / num_total_steps) ** 0.9 + end_learning_rate
param_group['lr'] = current_lr
# torch.nn.utils.clip_grad_norm_(model.module.parameters(), args.clip_grad)
optimizer.step()
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
if args.w_smoothness == 0.0:
print('[epoch][s/s_per_e/gs]: [{}][{}/{}/{}], lr: {:.12f}, loss: {:.8f}, depth loss: {:.4f}, radar loss: {:.4f}, radar depth loss: {:.4}'.format(\
epoch, step, steps_per_epoch, global_step, current_lr, loss, loss_d, loss_confidence, loss_d_rad))
else:
print('[epoch][s/s_per_e/gs]: [{}][{}/{}/{}], lr: {:.12f}, loss: {:.8f}, depth loss: {:.4f}, smooth loss: {:.4f}, radar loss: {:.4f}, radar depth loss: {:.4}'.format(\
epoch, step, steps_per_epoch, global_step, current_lr, loss, loss_d, loss_smoothness, loss_confidence, loss_d_rad))
if np.isnan(loss.cpu().item()):
print('NaN in loss occurred. Aborting training.')
return -1
duration += time.time() - before_op_time
if global_step and global_step % args.log_freq == 0 and not model_just_loaded:
# var_sum = [var.sum() for var in model.parameters() if var.requires_grad]
# var_cnt = len(var_sum)
# var_sum = np.sum(var_sum)
examples_per_sec = args.batch_size / duration * args.log_freq
duration = 0
time_sofar = (time.time() - start_time) / 3600
training_time_left = (num_total_steps / global_step - 1.0) * time_sofar
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
print("{}".format(args.model_name))
print_string = 'GPU: {} | examples/s: {:4.2f} | loss: {:.5f} | time elapsed: {:.2f}h | time left: {:.2f}h'
print(print_string.format(args.gpu, examples_per_sec, loss, time_sofar, training_time_left))
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
writer.add_scalar('depth_loss', loss_d, global_step)
writer.add_scalar('bcn_loss', loss_confidence, global_step)
writer.add_scalar('total_loss', loss, global_step)
writer.add_scalar('learning_rate', current_lr, global_step)
# writer.add_scalar('var average', var_sum.item()/var_cnt, global_step)
depth_gt = torch.where(depth_gt < 1e-3, depth_gt * 0 + 1e3, depth_gt)
writer.flush()
if not args.do_online_eval and global_step and global_step % args.save_freq == 0:
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
checkpoint = {'global_step': global_step,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()}
torch.save(checkpoint, args.log_directory + '/' + args.model_name + '/model-{}'.format(global_step))
if args.do_online_eval and global_step and global_step % args.eval_freq == 0 and not model_just_loaded:
time.sleep(0.1)
model.eval()
eval_measures = online_eval(model, dataloader_eval, gpu, ngpus_per_node)
if eval_measures is not None:
for i in range(10):
eval_summary_writer.add_scalar(eval_metrics[i], eval_measures[i].cpu(), int(global_step))
measure = eval_measures[i]
is_best = False
if i < 7 and measure < best_eval_measures_lower_better[i]:
old_best = best_eval_measures_lower_better[i].item()
best_eval_measures_lower_better[i] = measure.item()
is_best = True
elif i >= 7 and measure > best_eval_measures_higher_better[i-7]:
old_best = best_eval_measures_higher_better[i-7].item()
best_eval_measures_higher_better[i-7] = measure.item()
is_best = True
if is_best:
# if True:
old_best_step = best_eval_steps[i]
old_best_name = '/model-{}-best_{}_{:.5f}'.format(old_best_step, eval_metrics[i], old_best)
model_path = args.log_directory + '/' + args.model_name + old_best_name
if os.path.exists(model_path):
command = 'rm {}'.format(model_path)
os.system(command)
best_eval_steps[i] = global_step
model_save_name = '/model-{}-best_{}_{:.5f}'.format(global_step, eval_metrics[i], measure)
print('New best for {}. Saving model: {}'.format(eval_metrics[i], model_save_name))
checkpoint = {'global_step': global_step,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_eval_measures_higher_better': best_eval_measures_higher_better,
'best_eval_measures_lower_better': best_eval_measures_lower_better,
'best_eval_steps': best_eval_steps
}
torch.save(checkpoint, args.log_directory + '/' + args.model_name + model_save_name)
eval_summary_writer.flush()
model.train()
block_print()
set_misc(model)
enable_print()
model_just_loaded = False
global_step += 1
epoch += 1
if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0):
writer.close()
if args.do_online_eval:
eval_summary_writer.close()
def main():
if args.mode != 'train':
print('main.py is only for training. Use test.py instead.')
return -1
runtime = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
args.model_name = runtime + '_' + args.model_name
model_filename = args.model_name + '.py'
command = 'mkdir ' + args.log_directory + '/' + args.model_name
os.system(command)
args_out_path = args.log_directory + '/' + args.model_name + '/' + sys.argv[1]
command = 'cp ' + sys.argv[1] + ' ' + args_out_path
os.system(command)
torch.cuda.empty_cache()
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if ngpus_per_node > 1 and not args.multiprocessing_distributed:
print("This machine has more than 1 gpu. Please specify --multiprocessing_distributed, or set \'CUDA_VISIBLE_DEVICES=0\'")
return -1
if args.do_online_eval:
print("You have specified --do_online_eval.")
print("This will evaluate the model every eval_freq {} steps and save best models for individual eval metrics."
.format(args.eval_freq))
if args.multiprocessing_distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
main_worker(args.gpu, ngpus_per_node, args)
if __name__ == '__main__':
main()