@@ -7584,11 +7584,10 @@ def _add_numeric_operations(cls):
75847584 cls .any = _make_logical_function (
75857585 cls , 'any' , name , name2 , axis_descr ,
75867586 'Return whether any element is True over requested axis' ,
7587- nanops .nanany )
7587+ nanops .nanany , '' , '' )
75887588 cls .all = _make_logical_function (
7589- cls , 'all' , name , name2 , axis_descr ,
7590- 'Return whether all elements are True over requested axis' ,
7591- nanops .nanall )
7589+ cls , 'all' , name , name2 , axis_descr , _all_doc ,
7590+ nanops .nanall , _all_examples , _all_see_also )
75927591
75937592 @Substitution (outname = 'mad' ,
75947593 desc = "Return the mean absolute deviation of the values "
@@ -7845,25 +7844,78 @@ def _doc_parms(cls):
78457844%(outname)s : %(name1)s or %(name2)s (if level specified)\n """
78467845
78477846_bool_doc = """
7848-
78497847%(desc)s
78507848
78517849Parameters
78527850----------
78537851axis : %(axis_descr)s
78547852skipna : boolean, default True
78557853 Exclude NA/null values. If an entire row/column is NA, the result
7856- will be NA
7854+ will be NA.
78577855level : int or level name, default None
78587856 If the axis is a MultiIndex (hierarchical), count along a
7859- particular level, collapsing into a %(name1)s
7857+ particular level, collapsing into a %(name1)s.
78607858bool_only : boolean, default None
78617859 Include only boolean columns. If None, will attempt to use everything,
78627860 then use only boolean data. Not implemented for Series.
7861+ **kwargs : any, default None
7862+ Additional keywords have no affect but might be accepted for
7863+ compatibility with numpy.
78637864
78647865Returns
78657866-------
7866- %(outname)s : %(name1)s or %(name2)s (if level specified)\n """
7867+ %(outname)s : %(name1)s or %(name2)s (if level specified)
7868+
7869+ %(examples)s
7870+ %(see_also)s"""
7871+
7872+ _all_doc = """\
7873+ Return whether all elements are True over series or dataframe axis.
7874+
7875+ Returns True if all elements within a series or along a dataframe
7876+ axis are non-zero, not-empty or not-False."""
7877+
7878+ _all_examples = """\
7879+ Examples
7880+ --------
7881+ Series
7882+
7883+ >>> pd.Series([True, True]).all()
7884+ True
7885+ >>> pd.Series([True, False]).all()
7886+ False
7887+
7888+ Dataframes
7889+
7890+ Create a dataframe from a dictionary.
7891+
7892+ >>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]})
7893+ >>> df
7894+ col1 col2
7895+ 0 True True
7896+ 1 True False
7897+
7898+ Default behaviour checks if column-wise values all return True.
7899+
7900+ >>> df.all()
7901+ col1 True
7902+ col2 False
7903+ dtype: bool
7904+
7905+ Adding axis=1 argument will check if row-wise values all return True.
7906+
7907+ >>> df.all(axis=1)
7908+ 0 True
7909+ 1 False
7910+ dtype: bool
7911+ """
7912+
7913+ _all_see_also = """\
7914+ See also
7915+ --------
7916+ pandas.Series.all : Return True if all elements are True
7917+ pandas.DataFrame.any : Return True if one (or more) elements are True
7918+ """
78677919
78687920_cnum_doc = """
78697921
@@ -8046,9 +8098,10 @@ def cum_func(self, axis=None, skipna=True, *args, **kwargs):
80468098 return set_function_name (cum_func , name , cls )
80478099
80488100
8049- def _make_logical_function (cls , name , name1 , name2 , axis_descr , desc , f ):
8101+ def _make_logical_function (cls , name , name1 , name2 , axis_descr , desc , f ,
8102+ examples , see_also ):
80508103 @Substitution (outname = name , desc = desc , name1 = name1 , name2 = name2 ,
8051- axis_descr = axis_descr )
8104+ axis_descr = axis_descr , examples = examples , see_also = see_also )
80528105 @Appender (_bool_doc )
80538106 def logical_func (self , axis = None , bool_only = None , skipna = None , level = None ,
80548107 ** kwargs ):
0 commit comments