-
Notifications
You must be signed in to change notification settings - Fork 59
/
utils.py
262 lines (243 loc) · 9.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
"""
utils and whatnot
"""
import math
from collections import defaultdict, Counter
import torch
from torch.autograd import Variable
def logsumexp0(X):
"""
X - L x B x K
returns:
B x K
"""
if X.dim() == 2:
X = X.unsqueeze(2)
axis = 0
X2d = X.view(X.size(0), -1)
maxes, _ = torch.max(X2d, axis, True)
lse = maxes + torch.log(torch.sum(torch.exp(X2d - maxes.expand_as(X2d)), axis, True))
lse = lse.view(X.size(1), -1)
return lse
def logsumexp2(X):
"""
X - L x B x K
returns:
L x B
"""
if X.dim() == 2:
X = X.unsqueeze(0)
X2d = X.view(-1, X.size(2))
maxes, _ = torch.max(X2d, 1, True)
lse = maxes + torch.log(torch.sum(torch.exp(X2d - maxes.expand_as(X2d)), 1, True))
lse = lse.view(X.size(0), -1)
return lse
def logsumexp1(X):
"""
X - B x K
returns:
B x 1
"""
maxes, _ = torch.max(X, 1, True)
lse = maxes + torch.log(torch.sum(torch.exp(X - maxes.expand_as(X)), 1, True))
return lse
def vlogsumexp(v):
"""
for vectors
"""
maxv = v.max()
return maxv + math.log(torch.sum(torch.exp(v-maxv)))
def make_fwd_constr_idxs(L, T, constrs):
"""
for use w/ fwd alg.
constrs are 0-indexed
"""
cidxs = [set() for t in xrange(T)]
bsz = len(constrs)
for b in xrange(bsz):
for tup in constrs[b]:
if len(tup) == 2:
start, end = tup
else:
start, end = tup[0], tup[1]
clen = end - start
# for last thing in segment only allow segment length
end_steps_back = min(L, end)
cidxs[end-1].update([(end_steps_back-l-1)*bsz + b
for l in xrange(end_steps_back) if l+1 != clen])
# now disallow everything for everything else in the segment
for i in xrange(start, end-1):
steps_back = min(L, i+1)
cidxs[i].update([(steps_back-l-1)*bsz + b for l in xrange(steps_back)])
# now disallow things w/in L of the end
for i in xrange(end, min(T, end+L-1)):
steps_back = min(L, i+1)
cidxs[i].update([(steps_back-l+end-1)*bsz + b for l in xrange(i+1, end+steps_back)])
oi_cidxs = [None] # make 1-indexed
oi_cidxs.extend([torch.LongTensor(list(idxs)) if len(idxs) > 0 else None for idxs in cidxs])
return oi_cidxs
def make_bwd_constr_idxs(L, T, constrs):
"""
for use w/ bwd alg.
constrs are a bsz-length list of lists of (start, end, label) 0-indexed tups
"""
cidxs = [set() for t in xrange(T)]
bsz = len(constrs)
for b in xrange(bsz):
for tup in constrs[b]:
if len(tup) == 2:
start, end = tup
else:
start, end = tup[0], tup[1]
clen = end - start
steps_fwd = min(L, T-start)
# for first thing only allow segment length
cidxs[start].update([l*bsz + b for l in xrange(steps_fwd) if l+1 != clen])
# now disallow everything for everything else in the segment
for i in xrange(start+1, end):
steps_fwd = min(L, T-i)
cidxs[i].update([l*bsz + b for l in xrange(steps_fwd)])
# now disallow things w/in L of the start
for i in xrange(max(start-L+1, 0), start):
steps_fwd = min(L, T-i)
cidxs[i].update([l*bsz + b for l in xrange(steps_fwd) if i+l >= start])
oi_cidxs = [None]
oi_cidxs.extend([torch.LongTensor(list(idxs)) if len(idxs) > 0 else None for idxs in cidxs])
return oi_cidxs
def backtrace(node):
"""
assumes a node is (word, node) and that every history starts with (None, None)
"""
hyp = [node[0]]
while node[1] is not None:
node = node[1]
hyp.append(node[0])
return hyp[-2::-1] # returns all but last element, reversed
def backtrace3(node):
"""
assumes a node is (word, seg-label, node) etc
"""
hyp = [(node[0], node[1])]
while node[2] is not None:
node = node[2]
hyp.append((node[0], node[1]))
return hyp[-2::-1]
def beam_search2(net, corpus, ss, start_inp, exh0, exc0, srcfieldenc,
len_lps, row2tblent, row2feats, K, final_state=False):
"""
ss - discrete state index
exh0 - layers x 1 x rnn_size
exc0 - layers x 1 x rnn_size
start_inp - 1 x 1 x emb_size
len_lps - K x L, log normalized
"""
rul_ss = ss % net.K
i2w = corpus.dictionary.idx2word
w2i = corpus.dictionary.word2idx
genset = corpus.genset
unk_idx, eos_idx, pad_idx = w2i["<unk>"], w2i["<eos>"], w2i["<pad>"]
state_emb_sz = net.state_embs.size(3) if net.one_rnn else 0
if net.one_rnn:
cond_start_inp = torch.cat([start_inp, net.state_embs[rul_ss]], 2) # 1 x 1 x cat_size
hid, (hc, cc) = net.seg_rnns[0](cond_start_inp, (exh0, exc0))
else:
hid, (hc, cc) = net.seg_rnns[rul_ss](start_inp, (exh0, exc0))
curr_hyps = [(None, None)]
best_wscore, best_lscore = None, None # so we can truly average over words etc later
best_hyp, best_hyp_score = None, -float("inf")
curr_scores = torch.zeros(K, 1)
# N.B. we assume we have a single feature row for each timestep rather than avg
# over them as at training time. probably better, but could conceivably average like
# at training time.
inps = Variable(torch.LongTensor(K, 4), volatile=True)
for ell in xrange(net.L):
wrd_dist = net.get_next_word_dist(hid, rul_ss, srcfieldenc).cpu() # K x nwords
# disallow unks
wrd_dist[:, unk_idx].zero_()
if not final_state:
wrd_dist[:, eos_idx].zero_()
#if not ss == 25 or not ell == 3:
net.collapse_word_probs(row2tblent, wrd_dist)
wrd_dist.log_()
if ell > 0: # add previous scores
wrd_dist.add_(curr_scores.expand_as(wrd_dist))
maxprobs, top2k = torch.topk(wrd_dist.view(-1), 2*K)
cols = wrd_dist.size(1)
# we'll break as soon as <eos> is at the top of the beam.
# this ignores <eop> but whatever
if top2k[0] == eos_idx:
final_hyp = backtrace(curr_hyps[0])
final_hyp.append(eos_idx)
return final_hyp, maxprobs[0], len_lps[ss][ell]
new_hyps, anc_hs, anc_cs = [], [], []
#inps.data.fill_(pad_idx)
inps.data[:, 1].fill_(w2i["<ncf1>"])
inps.data[:, 2].fill_(w2i["<ncf2>"])
inps.data[:, 3].fill_(w2i["<ncf3>"])
for k in xrange(2*K):
anc, wrd = top2k[k] / cols, top2k[k] % cols
# check if any of the maxes are eop
if wrd == net.eop_idx and ell > 0:
# add len score (and avg over num words incl eop i guess)
wlenscore = maxprobs[k]/(ell+1) + len_lps[ss][ell-1]
if wlenscore > best_hyp_score:
best_hyp_score = wlenscore
best_hyp = backtrace(curr_hyps[anc])
best_wscore, best_lscore = maxprobs[k], len_lps[ss][ell-1]
else:
curr_scores[len(new_hyps)][0] = maxprobs[k]
if wrd >= net.decoder.out_features: # a copy
tblidx = wrd - net.decoder.out_features
inps.data[len(new_hyps)].copy_(row2feats[tblidx])
else:
inps.data[len(new_hyps)][0] = wrd if i2w[wrd] in genset else unk_idx
new_hyps.append((wrd, curr_hyps[anc]))
anc_hs.append(hc.narrow(1, anc, 1)) # layers x 1 x rnn_size
anc_cs.append(cc.narrow(1, anc, 1)) # layers x 1 x rnn_size
if len(new_hyps) == K:
break
assert len(new_hyps) == K
curr_hyps = new_hyps
if net.lut.weight.data.is_cuda:
inps = inps.cuda()
embs = net.lut(inps).view(1, K, -1) # 1 x K x nfeats*emb_size
if net.mlpinp:
embs = net.inpmlp(embs) # 1 x K x rnninsz
if net.one_rnn:
cond_embs = torch.cat([embs, net.state_embs[rul_ss].expand(1, K, state_emb_sz)], 2)
hid, (hc, cc) = net.seg_rnns[0](cond_embs, (torch.cat(anc_hs, 1), torch.cat(anc_cs, 1)))
else:
hid, (hc, cc) = net.seg_rnns[rul_ss](embs, (torch.cat(anc_hs, 1), torch.cat(anc_cs, 1)))
# hypotheses of length L still need their end probs added
# N.B. if the <eos> falls off the beam we could end up with situations
# where we take an L-length phrase w/ a lower score than 1-word followed by eos.
wrd_dist = net.get_next_word_dist(hid, rul_ss, srcfieldenc).cpu() # K x nwords
#wrd_dist = net.get_next_word_dist(hid, ss, srcfieldenc).cpu() # K x nwords
wrd_dist.log_()
wrd_dist.add_(curr_scores.expand_as(wrd_dist))
for k in xrange(K):
wlenscore = wrd_dist[k][net.eop_idx]/(net.L+1) + len_lps[ss][net.L-1]
if wlenscore > best_hyp_score:
best_hyp_score = wlenscore
best_hyp = backtrace(curr_hyps[k])
best_wscore, best_lscore = wrd_dist[k][net.eop_idx], len_lps[ss][net.L-1]
#if ss == 80:
# print "going with", best_hyp
return best_hyp, best_wscore, best_lscore
def calc_pur(counters):
purs, purs2 = [], []
for counter in counters:
if len(counter) > 0:
vals = counter.values()
if len(vals) > 0:
nonothers = [val for k, val in counter.items() if k != "other"]
oval = counter["other"] if "other" in counter else 0
if len(nonothers) > 0:
total = float(sum(nonothers))
maxval = max(nonothers)
if oval < total:
purs.append(maxval/total)
purs2.append(maxval/(total+oval))
purs, purs2 = torch.Tensor(purs), torch.Tensor(purs2)
print purs.mean(), purs.std()
print purs2.mean(), purs2.std()