-
Notifications
You must be signed in to change notification settings - Fork 2
/
bloom.erl
204 lines (181 loc) · 6.21 KB
/
bloom.erl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
% ``The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved via the world wide web at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
-module(bloom).
-author("Paulo Sergio Almeida <psa@di.uminho.pt>").
-export([sbf/1, sbf/2, sbf/3, sbf/4,
bloom/1, bloom/2,
member/2, add/2,
size/1, capacity/1]).
-export([is_element/2, add_element/2]). % alternative names
-import(math, [log/1, pow/2]).
is_element(E, B) -> member(E, B).
add_element(E, B) -> add(E, B).
%% Based on
%% Scalable Bloom Filters
%% Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, David Hutchison
%% Information Processing Letters
%% Volume 101, Issue 6, 31 March 2007, Pages 255-261
%%
%% Provides scalable bloom filters that can grow indefinitely while
%% ensuring a desired maximum false positive probability. Also provides
%% standard partitioned bloom filters with a maximum capacity. Bit arrays
%% are dimensioned as a power of 2 to enable reusing hash values across
%% filters through bit operations. Double hashing is used (no need for
%% enhanced double hashing for partitioned bloom filters).
%%
%% This module assumes the existence of a module called bitarray so that
%% different alternatives may be provided. To get an extremely efficient but
%% non-functional variant, hipe_bifs can be used, defining bitarray as:
%%
%%-module(bitarray).
%%-export([new/1, set/2, get/2]).
%%
%%new(Size) -> hipe_bifs:bitarray(Size, false).
%%set(I, A) -> hipe_bifs:bitarray_update(A, I, true).
%%get(I, A) -> hipe_bifs:bitarray_sub(A, I).
%%
%% A functional alternative with good lookup performance can be obtained
%% resorting to the array module. E.g.
%%
%%-module(bitarray).
%%-export([new/1, set/2, get/2]).
%%
%%-define(W, 27).
%%
%%new(N) -> array:new((N-1) div ?W + 1, {default, 0}).
%%
%%set(I, A) ->
%% AI = I div ?W,
%% V = array:get(AI, A),
%% V1 = V bor (1 bsl (I rem ?W)),
%% array:set(AI, V1, A).
%%
%%get(I, A) ->
%% AI = I div ?W,
%% V = array:get(AI, A),
%% V band (1 bsl (I rem ?W)) =/= 0.
-record(bloom, {
e, % error probability
n, % maximum number of elements
mb, % 2^mb = m, the size of each slice (bitvector)
size, % number of elements
a % list of bitvectors
}).
-record(sbf, {
e, % error probability
r, % error probability ratio
s, % log 2 of growth ratio
size, % number of elements
b % list of plain bloom filters
}).
%% Constructors for (fixed capacity) bloom filters
%%
%% N - capacity
%% E - error probability
bloom(N) -> bloom(N, 0.001).
bloom(N, E) when is_number(N), N > 0,
is_float(E), E > 0, E < 1,
N >= 4/E -> % rule of thumb; due to double hashing
bloom(size, N, E).
bloom(Mode, Dim, E) ->
K = 1 + trunc(log2(1/E)),
P = pow(E, 1 / K),
case Mode of
size -> Mb = 1 + trunc(-log2(1 - pow(1 - P, 1 / Dim)));
bits -> Mb = Dim
end,
M = 1 bsl Mb,
N = trunc(log(1-P) / log(1-1/M)),
#bloom{e=E, n=N, mb=Mb, size = 0,
a = [bitarray:new(1 bsl Mb) || _ <- lists:seq(1, K)]}.
log2(X) -> log(X) / log(2).
%% Constructors for scalable bloom filters
%%
%% N - initial capacity before expanding
%% E - error probability
%% S - growth ratio when full (log 2) can be 1, 2 or 3
%% R - tightening ratio of error probability
sbf(N) -> sbf(N, 0.001).
sbf(N, E) -> sbf(N, E, 1).
sbf(N, E, 1) -> sbf(N, E, 1, 0.85);
sbf(N, E, 2) -> sbf(N, E, 2, 0.75);
sbf(N, E, 3) -> sbf(N, E, 3, 0.65).
sbf(N, E, S, R) when is_number(N), N > 0,
is_float(E), E > 0, E < 1,
is_integer(S), S > 0, S < 4,
is_float(R), R > 0, R < 1,
N >= 4/(E*(1-R)) -> % rule of thumb; due to double hashing
#sbf{e=E, s=S, r=R, size=0, b=[bloom(N, E*(1-R))]}.
%% Returns number of elements
%%
size(#bloom{size=Size}) -> Size;
size(#sbf{size=Size}) -> Size.
%% Returns capacity
%%
capacity(#bloom{n=N}) -> N;
capacity(#sbf{}) -> infinity.
%% Test for membership
%%
member(Elem, #bloom{mb=Mb}=B) ->
Hashes = make_hashes(Mb, Elem),
hash_member(Hashes, B);
member(Elem, #sbf{b=[H|_]}=Sbf) ->
Hashes = make_hashes(H#bloom.mb, Elem),
hash_member(Hashes, Sbf).
hash_member(Hashes, #bloom{mb=Mb, a=A}) ->
Mask = 1 bsl Mb -1,
{I1, I0} = make_indexes(Mask, Hashes),
all_set(Mask, I1, I0, A);
hash_member(Hashes, #sbf{b=B}) ->
lists:any(fun(X) -> hash_member(Hashes, X) end, B).
make_hashes(Mb, E) when Mb =< 16 ->
erlang:phash2({E}, 1 bsl 32);
make_hashes(Mb, E) when Mb =< 32 ->
{erlang:phash2({E}, 1 bsl 32), erlang:phash2([E], 1 bsl 32)}.
make_indexes(Mask, {H0, H1}) when Mask > 1 bsl 16 -> masked_pair(Mask, H0, H1);
make_indexes(Mask, {H0, _}) -> make_indexes(Mask, H0);
make_indexes(Mask, H0) -> masked_pair(Mask, H0 bsr 16, H0).
masked_pair(Mask, X, Y) -> {X band Mask, Y band Mask}.
all_set(_Mask, _I1, _I, []) -> true;
all_set(Mask, I1, I, [H|T]) ->
case bitarray:get(I, H) of
true -> all_set(Mask, I1, (I+I1) band Mask, T);
false -> false
end.
%% Adds element to set
%%
add(Elem, #bloom{mb=Mb} = B) ->
Hashes = make_hashes(Mb, Elem),
hash_add(Hashes, B);
add(Elem, #sbf{size=Size, r=R, s=S, b=[H|T]=Bs}=Sbf) ->
#bloom{mb=Mb, e=E, n=N, size=HSize} = H,
Hashes = make_hashes(Mb, Elem),
case hash_member(Hashes, Sbf) of
true -> Sbf;
false ->
case HSize < N of
true -> Sbf#sbf{size=Size+1, b=[hash_add(Hashes, H)|T]};
false ->
B = add(Elem, bloom(bits, Mb + S, E * R)),
Sbf#sbf{size=Size+1, b=[B|Bs]}
end
end.
hash_add(Hashes, #bloom{mb=Mb, a=A, size=Size} = B) ->
Mask = 1 bsl Mb -1,
{I1, I0} = make_indexes(Mask, Hashes),
case all_set(Mask, I1, I0, A) of
true -> B;
false -> B#bloom{size=Size+1, a=set_bits(Mask, I1, I0, A, [])}
end.
set_bits(_Mask, _I1, _I, [], Acc) -> lists:reverse(Acc);
set_bits(Mask, I1, I, [H|T], Acc) ->
set_bits(Mask, I1, (I+I1) band Mask, T, [bitarray:set(I, H) | Acc]).