-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathutils.py
132 lines (95 loc) · 3.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import csv
import os
import torch
from torch.optim import *
import torchvision
from torchvision.transforms import *
from scipy import stats
from sklearn import metrics
import numpy as np
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Logger(object):
def __init__(self, path, header):
self.log_file = open(path, 'w')
self.logger = csv.writer(self.log_file, delimiter='\t')
self.logger.writerow(header)
self.header = header
def __del(self):
self.log_file.close()
def log(self, values):
write_values = []
for col in self.header:
assert col in values
write_values.append(values[col])
self.logger.writerow(write_values)
self.log_file.flush()
def accuracy(output, target, topk=(1, 5)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res, pred
def reverseTransform(img):
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
if len(img.shape) == 5:
for i in range(3):
img[:, i, :, :, :] = img[:, i, :, :, :]*std[i] + mean[i]
else:
for i in range(3):
img[:, i, :, :] = img[:, i, :, :]*std[i] + mean[i]
return img
def d_prime(auc):
standard_normal = stats.norm()
d_prime = standard_normal.ppf(auc) * np.sqrt(2.0)
return d_prime
def calculate_stats(output, target):
"""Calculate statistics including mAP, AUC, etc.
Args:
output: 2d array, (samples_num, classes_num)
target: 2d array, (samples_num, classes_num)
Returns:
stats: list of statistic of each class.
"""
classes_num = target.shape[-1]
stats = []
# Class-wise statistics
for k in range(classes_num):
# Average precision
avg_precision = metrics.average_precision_score(
target[:, k], output[:, k], average=None)
# AUC
auc = metrics.roc_auc_score(target[:, k], output[:, k], average=None)
# Precisions, recalls
(precisions, recalls, thresholds) = metrics.precision_recall_curve(
target[:, k], output[:, k])
# FPR, TPR
(fpr, tpr, thresholds) = metrics.roc_curve(target[:, k], output[:, k])
save_every_steps = 1000 # Sample statistics to reduce size
dict = {'precisions': precisions[0::save_every_steps],
'recalls': recalls[0::save_every_steps],
'AP': avg_precision,
'fpr': fpr[0::save_every_steps],
'fnr': 1. - tpr[0::save_every_steps],
'auc': auc}
stats.append(dict)
return stats