-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
425 lines (351 loc) · 18.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import argparse
from pathlib import Path
import random
import math
from tqdm import tqdm
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.autograd import grad
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from dataset import MultiResolutionDataset
from model.hyper_mod import StyledGenerator, Task, Discriminator
from pretrained_converter import convert_generator, assert_loaded_keys, freeze_layers
from barlow_twins import BarlowTwins, DiffTransform as ContrTransform, compute_contrastive
from utils import seed_everything, save_hparams, sample_data, adjust_lr, not_frozen_params, requires_grad, accumulate, log_images, get_run_id
def train(args, dataset, generator, discriminator, task, g_running, t_running, g_optimizer, d_optimizer,
contr_transform, contr_criterion):
step = int(math.log2(args.init_size)) - 2
resolution = 4 * 2 ** step
loader = sample_data(
dataset, args.batch.get(resolution, args.batch_default), resolution
)
data_loader = iter(loader)
adjust_lr(g_optimizer, args.lr.get(resolution, 0.002))
adjust_lr(d_optimizer, args.lr.get(resolution, 0.002))
pbar = tqdm(range(args.iterations))
grad_map_generator = not_frozen_params(generator)
grad_map_discriminator = not_frozen_params(discriminator)
requires_grad(generator, False)
requires_grad(discriminator, True, grad_map=grad_map_discriminator)
disc_loss_val = 0
gen_loss_val = 0
grad_loss_val = 0
used_sample = 0
num_imgs = 0
max_step = int(math.log2(args.max_size)) - 2
final_progress = False
run_dir = f'{args.run_dir}/{get_run_id(args.run_dir):05d}-{args.name}'
Path(run_dir).mkdir(parents=True)
save_hparams(run_dir, args)
if not args.no_tb:
writer = SummaryWriter(run_dir)
for i in pbar:
d_optimizer.zero_grad()
if args.const_alpha is not None:
alpha = args.const_alpha
else:
alpha = min(1, 1 / args.phase * (used_sample + 1))
if (resolution == args.init_size and args.ckpt is None) or final_progress:
if args.const_alpha is not None:
alpha = args.const_alpha
else:
alpha = 1
if used_sample > args.phase * 2:
used_sample = 0
step += 1
if step > max_step:
step = max_step
final_progress = True
ckpt_step = step + 1
else:
if args.const_alpha is not None:
alpha = args.const_alpha
else:
alpha = 0
ckpt_step = step
resolution = 4 * 2 ** step
loader = sample_data(
dataset, args.batch.get(resolution, args.batch_default), resolution
)
data_loader = iter(loader)
if not args.no_checkpointing:
torch.save(
{
'generator': generator.module.state_dict(),
'discriminator': discriminator.module.state_dict(),
'g_optimizer': g_optimizer.state_dict(),
'd_optimizer': d_optimizer.state_dict(),
'g_running': g_running.state_dict(),
'task_g': task.module.state_dict(),
't_running_g': t_running.state_dict(),
},
f'{run_dir}/train_step-{ckpt_step}.model',
)
adjust_lr(g_optimizer, args.lr.get(resolution, 0.002))
adjust_lr(d_optimizer, args.lr.get(resolution, 0.002))
try:
real_image, real_label = next(data_loader)
except (OSError, StopIteration):
data_loader = iter(loader)
real_image, real_label = next(data_loader)
used_sample += real_image.shape[0]
num_imgs += real_image.shape[0]
b_size = real_image.size(0)
real_image = real_image.cuda()
real_label = real_label.cuda()
if args.loss == 'wgan-gp':
real_predict = discriminator(real_image, c=real_label, step=step, alpha=alpha)
real_predict = real_predict.mean() - 0.001 * (real_predict ** 2).mean()
(-real_predict).backward()
elif args.loss == 'r1':
real_image.requires_grad = True
real_scores = discriminator(real_image, c=real_label, step=step, alpha=alpha)
real_predict = F.softplus(-real_scores).mean()
real_predict.backward(retain_graph=True)
grad_real = grad(
outputs=real_scores.sum(), inputs=real_image, create_graph=True
)[0]
grad_penalty = (
grad_real.view(grad_real.size(0), -1).norm(2, dim=1) ** 2
).mean()
grad_penalty = 10 / 2 * grad_penalty
grad_penalty.backward()
if i % 10 == 0:
grad_loss_val = grad_penalty.item()
if args.contrastive:
contr_loss_real = compute_contrastive(discriminator, real_image, contr_criterion, contr_transform, c=real_label,
step=step, alpha=alpha, weighting=args.contr_weighting)
contr_loss_real.backward()
if args.mixing and random.random() < 0.9:
gen_in11, gen_in12, gen_in21, gen_in22 = torch.randn(
4, b_size, args.code_size, device='cuda'
).chunk(4, 0)
gen_in1 = [gen_in11.squeeze(0), gen_in12.squeeze(0)]
gen_in2 = [gen_in21.squeeze(0), gen_in22.squeeze(0)]
else:
gen_in1, gen_in2 = torch.randn(2, b_size, args.code_size, device='cuda').chunk(
2, 0
)
gen_in1 = gen_in1.squeeze(0)
gen_in2 = gen_in2.squeeze(0)
fake_image = generator(gen_in1, step=step, alpha=alpha, task=task(real_label))
fake_predict = discriminator(fake_image, c=real_label, step=step, alpha=alpha)
if args.loss == 'wgan-gp':
fake_predict = fake_predict.mean()
fake_predict.backward()
eps = torch.rand(b_size, 1, 1, 1).cuda()
x_hat = eps * real_image.data + (1 - eps) * fake_image.data
x_hat.requires_grad = True
hat_predict = discriminator(x_hat, c=real_label, step=step, alpha=alpha)
grad_x_hat = grad(
outputs=hat_predict.sum(), inputs=x_hat, create_graph=True
)[0]
grad_penalty = (
(grad_x_hat.view(grad_x_hat.size(0), -1).norm(2, dim=1) - 1) ** 2
).mean()
grad_penalty = 10 * grad_penalty
grad_penalty.backward()
if i % 10 == 0:
grad_loss_val = grad_penalty.item()
disc_loss_val = (-real_predict + fake_predict).item()
elif args.loss == 'r1':
fake_predict = F.softplus(fake_predict).mean()
fake_predict.backward()
if i % 10 == 0:
disc_loss_val = (real_predict + fake_predict).item()
if args.contrastive:
fake_image = generator(gen_in1, step=step, alpha=alpha, task=task(real_label))
contr_loss_fake = compute_contrastive(discriminator, fake_image, contr_criterion, contr_transform,
c=real_label, step=step, alpha=alpha, weighting=args.contr_weighting)
contr_loss_fake.backward()
d_optimizer.step()
if (i + 1) % args.n_critic == 0:
g_optimizer.zero_grad()
requires_grad(generator, True, grad_map=grad_map_generator)
requires_grad(discriminator, False)
fake_image = generator(gen_in2, step=step, alpha=alpha, task=task(real_label))
predict = discriminator(fake_image, c=real_label, step=step, alpha=alpha)
if args.loss == 'wgan-gp':
loss = -predict.mean()
elif args.loss == 'r1':
loss = F.softplus(-predict).mean()
if i % 10 == 0:
gen_loss_val = loss.item()
loss.backward()
g_optimizer.step()
accumulate(g_running, generator.module, grad_map=grad_map_generator)
accumulate(t_running, task.module)
requires_grad(generator, False)
requires_grad(discriminator, True, grad_map=grad_map_discriminator)
if i % args.img_log_interval == 0:
log_images(f'{run_dir}/fakes{i:06d}.png', alpha, args, dataset, resolution, real_image.size(0), step, g_running, t_running)
if i % args.checkpoint_interval == 0 and i >= args.begin_checkpointing_at and not args.no_checkpointing:
torch.save(
{
'generator': generator.module.state_dict(),
'discriminator': discriminator.module.state_dict(),
# 'g_optimizer': g_optimizer.state_dict(),
# 'd_optimizer': d_optimizer.state_dict(),
'g_running': g_running.state_dict(),
'task_g': task.module.state_dict(),
't_running_g': t_running.state_dict(),
},
f'{run_dir}/{i:06d}.model',
)
state_msg = (
f'Size: {4 * 2 ** step}; G: {gen_loss_val:.3f}; D: {disc_loss_val:.3f};'
f' Grad: {grad_loss_val:.3f}; Alpha: {alpha:.5f}'
)
pbar.set_description(state_msg)
if not args.no_tb:
writer.add_scalar('1.loss/G', gen_loss_val, i)
writer.add_scalar('1.loss/D', disc_loss_val, i)
writer.add_scalar('1.loss/grad', grad_loss_val, i)
if args.contrastive:
writer.add_scalar('1.loss/BT_real', contr_loss_real, i)
writer.add_scalar('1.loss/BT_fake', contr_loss_fake, i)
writer.add_scalar('alpha', alpha, i)
writer.add_scalar('resolution', 4 * 2 ** step, i)
writer.add_scalar('batch_size', loader.batch_size, i)
writer.add_scalar('lr/discriminator', d_optimizer.param_groups[0]['lr'], i)
writer.add_scalar('lr/generator', g_optimizer.param_groups[0]['lr'], i)
writer.add_scalar('lr/task', g_optimizer.param_groups[1]['lr'], i)
writer.add_scalar('kimgs', num_imgs / 1000, i)
def get_args():
parser = argparse.ArgumentParser(description='Hyper-Modulation')
# GAN config
parser.add_argument('path', type=str, help='path of specified dataset')
parser.add_argument('--iterations', default=3_000_000, type=int, help='training iterations')
parser.add_argument('--phase', type=int, default=600_000, help='number of samples used for each training phases')
parser.add_argument('--lr', default=0.001, type=float, help='learning rate')
parser.add_argument('--sched', action='store_true', help='use lr scheduling')
parser.add_argument('--init_size', default=8, type=int, help='initial image size')
parser.add_argument('--max_size', default=1024, type=int, help='max image size')
parser.add_argument('--batch_default', default=32, type=int, help='batch size if no lr scheduling is activated')
parser.add_argument('--n_critic', default=1, type=int, help='Number of critic iterations in a global iteration')
parser.add_argument('--ckpt', default=None, type=str, help='load from previous checkpoints')
parser.add_argument('--no_from_rgb_activate', action='store_true', help='use activate in from_rgb (original implementation)')
parser.add_argument('--mixing', action='store_true', help='use mixing regularization')
parser.add_argument('--loss', type=str, default='wgan-gp', choices=['wgan-gp', 'r1'], help='class of gan loss')
parser.add_argument('--const_alpha', default=None, type=float, help='Whether to use a constant alpha')
# Logging config
parser.add_argument('--name', default=None, type=str, help='Name of the experiment')
parser.add_argument('--run_dir', default='data/training-runs', type=str, help='')
parser.add_argument('--no_tb', action='store_true', help='dont log in tensorboard')
parser.add_argument('--no_checkpointing', action='store_true', help='dont save checkpoints')
parser.add_argument('--begin_checkpointing_at', default=0, type=int, help='dont save model before a training point')
parser.add_argument('--checkpoint_interval', default=10_000, type=int, help='how often to save the model')
parser.add_argument('--img_log_interval', default=1_000, type=int, help='how often to generate images')
# Dataset config
parser.add_argument('--filter_classes', default=None, nargs='+', type=int, help='Use only n classes')
parser.add_argument('--dataset_length', default=None, type=int, help='Constrain the number of samples')
parser.add_argument('--dataset_class_samples', default=None, type=int, help='Constrain the number of samples')
parser.add_argument('--dataset_random_class_sampling', action='store_true', help='Random sample the subset of class samples')
# Hyper-modulation config
parser.add_argument('--n_mlp_style', default=8, type=int, help='')
parser.add_argument('--n_mlp_task', default=4, type=int, help='Task net depth')
parser.add_argument('--code_size', default=512, type=int, help='')
parser.add_argument('--task_size', default=64, type=int, help='task width')
parser.add_argument('--finetune', action='store_true', help='Finetune underlying pretrained model')
# Contrastive config
parser.add_argument('--contrastive', action='store_true', help='Enable contrastive training')
parser.add_argument('--contr_weighting', default=0.01, type=float, help='Contrastive training weighting in the final loss')
parser.add_argument('--contr_feats', default=512, type=int, help='Dimensionality of features passed to the contrastive loss')
return parser.parse_args()
def main(args):
seed_everything(42)
torch.backends.cudnn.benchmark = True
contr_transform = None
contr_criterion = None
print(f'loss: {args.loss}')
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True),
]
)
if args.contrastive:
contr_transform = ContrTransform(crop_resize=256)
dataset = MultiResolutionDataset(args.path, transform, selected_classes=args.filter_classes, class_samples=args.dataset_class_samples, random_class_sampling=args.dataset_random_class_sampling, length=args.dataset_length)
print(f'dataset len: {len(dataset)}')
print(f'dataset classes: {dataset.num_classes}')
args.num_classes = dataset.num_classes
print(f'contrastive training: {args.contrastive}')
generator = nn.DataParallel(StyledGenerator(code_dim=args.code_size, task_dim=args.task_size, n_mlp=args.n_mlp_style)).cuda()
discriminator = nn.DataParallel(
Discriminator(num_classes=args.num_classes, from_rgb_activate=not args.no_from_rgb_activate)
).cuda()
task = nn.DataParallel(Task(args.task_size, n_mlp=args.n_mlp_task, num_labels=dataset.num_classes)).cuda() # class network
g_running = StyledGenerator(code_dim=args.code_size, task_dim=args.task_size, n_mlp=args.n_mlp_style).cuda()
g_running.train(False)
t_running = Task(args.task_size, n_mlp=args.n_mlp_task, num_labels=dataset.num_classes).cuda()
t_running.train(False)
if args.contrastive:
contr_criterion = nn.DataParallel(BarlowTwins(num_feats=args.contr_feats, use_projector=False)).cuda()
g_optimizer = optim.Adam(
generator.module.generator.parameters(), lr=args.lr, betas=(0.0, 0.99)
)
g_optimizer.add_param_group(
{
'params': task.parameters(),
'lr': args.lr * 0.01,
'mult': 0.001,
}
)
d_optimizer = optim.Adam(discriminator.parameters(), lr=args.lr, betas=(0.0, 0.99))
if args.contrastive:
d_optimizer.add_param_group({
'params': contr_criterion.parameters(),
'lr': args.lr,
})
accumulate(g_running, generator.module, 0)
accumulate(t_running, task.module, 0)
if args.ckpt is not None:
ckpt = torch.load(args.ckpt)
if 'task_g' in ckpt:
ckpt['task'] = ckpt['task_g']
if 'task' in ckpt: # load self-aligned checkpoint
generator.module.load_state_dict(ckpt['generator'])
# copy original class embedding for all new classes
ckpt['task']['task.0.weight_orig'] = ckpt['task']['task.0.weight_orig'].repeat((dataset.num_classes, 1))
task.module.load_state_dict(ckpt['task'])
g_running.load_state_dict(ckpt['generator'])
t_running.load_state_dict(ckpt['task'])
del ckpt # avoid OOM
# load vanilla discriminator
ckpt = torch.load('data/stylegan-256px-new.model')
missing, unexpected = discriminator.module.load_state_dict(ckpt['discriminator'], strict=False)
unexpected = [k for k in unexpected if not k.startswith('linear.')]
assert len(unexpected) == 0
missing = [k for k in missing if not k.startswith('final.')]
assert len(missing) == 0
del ckpt # avoid OOM
else: # begin training from pretrained vanilla stylegan
missing, unexpected = generator.module.load_state_dict(convert_generator(ckpt['generator']), strict=False)
assert_loaded_keys(missing, unexpected)
missing, unexpected = g_running.load_state_dict(convert_generator(ckpt['g_running']), strict=False)
assert_loaded_keys(missing, unexpected)
# load vanilla discriminator
missing, unexpected = discriminator.module.load_state_dict(ckpt['discriminator'], strict=False)
unexpected = [k for k in unexpected if not k.startswith('linear.')]
assert len(unexpected) == 0
missing = [k for k in missing if not k.startswith('final.')]
assert len(missing) == 0
del ckpt # avoid OOM
if not args.finetune:
# can be stated here (after the optimizers declaration), as long as it's before the forward pass
freeze_layers(generator, discriminator, g_running)
if args.sched:
args.lr = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}
args.batch = {4: 512, 8: 256, 16: 128, 32: 64, 64: 30, 128: 20, 256: 10}
else:
args.lr = {}
args.batch = {}
args.gen_sample = {512: (8, 4), 1024: (4, 2)}
train(args, dataset, generator, discriminator, task, g_running, t_running, g_optimizer, d_optimizer,
contr_transform, contr_criterion)
if __name__ == '__main__':
main(get_args())