-
Notifications
You must be signed in to change notification settings - Fork 30
/
Range.fs
667 lines (552 loc) · 24 KB
/
Range.fs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
namespace Hedgehog
open System
open Hedgehog.Numeric
/// Tests are parameterized by the `Size` of the randomly-generated data,
/// the meaning of which depends on the particular generator used.
type Size = int
/// A range describes the bounds of a number to generate, which may or may not
/// be dependent on a 'Size'.
///
/// The constructor takes an origin between the lower and upper bound, and a
/// function from 'Size' to bounds. As the size goes towards 0, the values
/// go towards the origin.
type Range<'a> =
| Range of origin : 'a * (Size -> 'a * 'a)
module Range =
let private bimap (f : 'a -> 'b) (g : 'c -> 'd) (a : 'a, b : 'c) : 'b * 'd =
f a, g b
[<CompiledName("Map")>]
let map (f : 'a -> 'b) (Range (z, g) : Range<'a>) : Range<'b> =
Range (f z, fun sz ->
bimap f f (g sz))
//
// Combinators - Range
//
/// Get the origin of a range. This might be the mid-point or the lower
/// bound, depending on what the range represents.
///
/// The 'bounds' of a range are scaled around this value when using the
/// 'linear' family of combinators.
///
/// When using a 'Range' to generate numbers, the shrinking function will
/// shrink towards the origin.
[<CompiledName("Origin")>]
let origin (Range (z, _) : Range<'a>) : 'a =
z
/// Get the extents of a range, for a given size.
[<CompiledName("Bounds")>]
let bounds (sz : Size) (Range (_, f) : Range<'a>) : 'a * 'a =
f sz
/// Get the lower bound of a range for the given size.
[<CompiledName("LowerBound")>]
let lowerBound (sz : Size) (range : Range<'a>) : 'a =
let (x, y) =
bounds sz range
min x y
/// Get the upper bound of a range for the given size.
[<CompiledName("UpperBound")>]
let upperBound (sz : Size) (range : Range<'a>) : 'a =
let (x, y) =
bounds sz range
max x y
//
// Combinators - Constant
//
/// Construct a range which represents a constant single value.
[<CompiledName("Singleton")>]
let singleton (x : 'a) : Range<'a> =
Range (x, fun _ -> x, x)
/// Construct a range which is unaffected by the size parameter with a
/// origin point which may differ from the bounds.
[<CompiledName("ConstantFrom")>]
let constantFrom (z : 'a) (x : 'a) (y : 'a) : Range<'a> =
Range (z, fun _ -> x, y)
/// Construct a range which is unaffected by the size parameter.
[<CompiledName("Constant")>]
let constant (x : 'a) (y : 'a) : Range<'a> =
constantFrom x x y
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("`ConstantBounded")>]
let inline constantBounded () : Range<'a> =
let lo = minValue ()
let hi = maxValue ()
let zero = LanguagePrimitives.GenericZero
constantFrom zero lo hi
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedInt8")>]
let __constantBoundedInt8 : Range<int8> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedInt16")>]
let __constantBoundedInt16 : Range<Int16> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedInt32")>]
let __constantBoundedInt32 : Range<Int32> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedInt64")>]
let __constantBoundedInt64 : Range<Int64> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedUInt8")>]
let __constantBoundedUInt8 : Range<uint8> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedUInt16")>]
let __constantBoundedUInt16 : Range<UInt16> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedUInt32")>]
let __constantBoundedUInt32 : Range<UInt32> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedUInt64")>]
let __constantBoundedUInt64 : Range<UInt64> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedFloat")>]
let __constantBoundedFloat : Range<float> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedDouble")>]
let __constantBoundedDouble : Range<double> =
constantBounded ()
/// Construct a range which is unaffected by the size parameter using the
/// full range of a data type.
[<CompiledName("ConstantBoundedDecimal")>]
let __constantBoundedDecimal : Range<decimal> =
constantBounded ()
//
// Combinators - Linear
//
[<AutoOpen>]
module Internal =
// The functions in this module where initially marked as internal
// but then the F# compiler complained with the following message:
//
// The value 'linearFrom' was marked inline but its implementation
// makes use of an internal or private function which is not
// sufficiently accessible.
/// Truncate a value so it stays within some range.
let clamp (x : 'a) (y : 'a) (n : 'a) : 'a =
if x > y then
min x (max y n)
else
min y (max x n)
/// Scale an integral linearly with the size parameter.
let inline scaleLinear (sz0 : Size) (z0 : 'a) (n0 : 'a) : 'a =
let sz =
max 0 (min 99 sz0)
let z =
toBigInt z0
let n =
toBigInt n0
let diff =
((n - z) * bigint sz) / (bigint 99)
fromBigInt (z + diff)
/// Scale an integral exponentially with the size parameter.
let inline scaleExponential (lo : 'a) (hi : 'a) (sz0 : Size) (z0 : 'a) (n0 : 'a) : 'a =
let sz =
clamp 0 99 sz0
let z =
toBigInt z0
let n =
toBigInt n0
let diff =
(((float (abs (n - z) + 1I)) ** (float sz / 99.0)) - 1.0) * float (sign (n - z))
// https://github.com/hedgehogqa/fsharp-hedgehog/issues/185
fromBigInt (clamp (toBigInt lo) (toBigInt hi) (bigint (round (float z + diff))))
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("`LinearFrom")>]
let inline linearFrom (z : 'a) (x : 'a) (y : 'a) : Range<'a> =
Range (z, fun sz ->
let x_sized =
clamp x y (scaleLinear sz z x)
let y_sized =
clamp x y (scaleLinear sz z y)
x_sized, y_sized)
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromInt8")>]
let __linearFromInt8 (z, x, y) : Range<int8> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromInt16")>]
let __linearFromInt16 (z, x, y) : Range<Int16> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromInt32")>]
let __linearFromInt32 (z, x, y) : Range<Int32> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromInt64")>]
let __linearFromInt64 (z, x, y) : Range<Int64> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromUInt8")>]
let __linearFromUInt8 (z, x, y) : Range<uint8> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromUInt16")>]
let __linearFromUInt16 (z, x, y) : Range<UInt16> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromUInt32")>]
let __linearFromUInt32 (z, x, y) : Range<UInt32> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromUInt64")>]
let __linearFromUInt64 (z, x, y) : Range<UInt64> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromFloat")>]
let __linearFromFloat (z, x, y) : Range<float> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromDouble")>]
let __linearFromDouble (z, x, y) : Range<double> =
linearFrom z x y
/// Construct a range which scales the bounds relative to the size
/// parameter.
[<CompiledName("LinearFromDecimal")>]
let __linearFromDecimal (z, x, y) : Range<decimal> =
linearFrom z x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("`Linear")>]
let inline linear (x : 'a) (y : 'a) : Range<'a> =
linearFrom x x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearInt8")>]
let __linearInt8 (x, y) : Range<int8> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearInt16")>]
let __linearInt16 (x, y) : Range<Int16> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearInt32")>]
let __linearInt32 (x, y) : Range<Int32> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearInt64")>]
let __linearInt64 (x, y) : Range<Int64> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearUInt8")>]
let __linearUInt8 (x, y) : Range<uint8> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearUInt16")>]
let __linearUInt16 (x, y) : Range<UInt16> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearUInt32")>]
let __linearUInt32 (x, y) : Range<UInt32> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearUInt64")>]
let __linearUInt64 (x, y) : Range<UInt64> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearFloat")>]
let __linearFloat (x, y) : Range<float> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearDouble")>]
let __linearDouble (z, x, y) : Range<double> =
linear x y
/// Construct a range which scales the second bound relative to the size
/// parameter.
[<CompiledName("LinearDecimal")>]
let __linearDecimal (z, x, y) : Range<decimal> =
linear x y
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("`LinearBounded")>]
let inline linearBounded () : Range<'a> =
let lo = minValue ()
let hi = maxValue ()
let zero = LanguagePrimitives.GenericZero
linearFrom zero lo hi
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedInt8")>]
let __linearBoundedInt8 : Range<int8> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedInt16")>]
let __linearBoundedInt16 : Range<Int16> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedInt32")>]
let __linearBoundedInt32 : Range<Int32> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedInt64")>]
let __linearBoundedInt64 : Range<Int64> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedUInt8")>]
let __linearBoundedUInt8 : Range<uint8> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedUInt16")>]
let __linearBoundedUInt16 : Range<UInt16> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedUInt32")>]
let __linearBoundedUInt32 : Range<UInt32> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedUInt64")>]
let __linearBoundedUInt64 : Range<UInt64> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedFloat")>]
let __linearBoundedFloat : Range<float> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedDouble")>]
let __linearBoundedDouble : Range<double> =
linearBounded ()
/// Construct a range which is scaled relative to the size parameter and
/// uses the full range of a data type.
[<CompiledName("LinearBoundedDecimal")>]
let __linearBoundedDecimal : Range<decimal> =
linearBounded ()
//
// Combinators - Exponential
//
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("`ExponentialFrom")>]
let inline exponentialFrom (z : 'a) (x : 'a) (y : 'a) : Range<'a> =
Range (z, fun sz ->
let scale =
// https://github.com/hedgehogqa/fsharp-hedgehog/issues/185
scaleExponential x y sz z
let x_sized =
scale x
let y_sized =
scale y
x_sized, y_sized)
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromInt8")>]
let __exponentialFromInt8 (z, x, y) : Range<int8> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromInt16")>]
let __exponentialFromInt16 (z, x, y) : Range<Int16> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromInt32")>]
let __exponentialFromInt32 (z, x, y) : Range<Int32> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromInt64")>]
let __exponentialFromInt64 (z, x, y) : Range<Int64> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromUInt8")>]
let __exponentialFromUInt8 (z, x, y) : Range<uint8> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromUInt16")>]
let __exponentialFromUInt16 (z, x, y) : Range<UInt16> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromUInt32")>]
let __exponentialFromUInt32 (z, x, y) : Range<UInt32> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromUInt64")>]
let __exponentialFromUInt64 (z, x, y) : Range<UInt64> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromFloat")>]
let __exponentialFromFloat (z, x, y) : Range<float> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromDouble")>]
let __exponentialFromDouble (z, x, y) : Range<double> =
exponentialFrom z x y
/// Construct a range which scales the bounds exponentially relative to the
/// size parameter.
[<CompiledName("ExponentialFromDecimal")>]
let __exponentialFromDecimal (z, x, y) : Range<decimal> =
exponentialFrom z x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("`Exponential")>]
let inline exponential (x : 'a) (y : 'a) : Range<'a> =
exponentialFrom x x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialInt8")>]
let __exponentialInt8 (x, y) : Range<int8> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialInt16")>]
let __exponentialInt16 (x, y) : Range<Int16> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialInt32")>]
let __exponentialInt32 (x, y) : Range<Int32> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialInt64")>]
let __exponentialInt64 (x, y) : Range<Int64> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialUInt8")>]
let __exponentialUInt8 (x, y) : Range<uint8> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialUInt16")>]
let __exponentialUInt16 (x, y) : Range<UInt16> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialUInt32")>]
let __exponentialUInt32 (x, y) : Range<UInt32> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialUInt64")>]
let __exponentialUInt64 (x, y) : Range<UInt64> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialFloat")>]
let __exponentialFloat (x, y) : Range<float> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialDouble")>]
let __exponentialDouble (x, y) : Range<double> =
exponential x y
/// Construct a range which scales the second bound exponentially relative
/// to the size parameter.
[<CompiledName("ExponentialDecimal")>]
let __exponentialDecimal (x, y) : Range<decimal> =
exponential x y
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("`ExponentialBounded")>]
let inline exponentialBounded () : Range<'a> =
let lo = minValue ()
let hi = maxValue ()
let zero = LanguagePrimitives.GenericZero
exponentialFrom zero lo hi
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedInt8")>]
let __exponentialBoundedInt8 : Range<int8> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedInt16")>]
let __exponentialBoundedInt16 : Range<Int16> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedInt32")>]
let __exponentialBoundedInt32 : Range<Int32> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedInt64")>]
let __exponentialBoundedInt64 : Range<Int64> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedUInt8")>]
let __exponentialBoundedUInt8 : Range<uint8> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedUInt16")>]
let __exponentialBoundedUInt16 : Range<UInt16> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedUInt32")>]
let __exponentialBoundedUInt32 : Range<UInt32> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedUInt64")>]
let __exponentialBoundedUInt64 : Range<UInt64> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedFloat")>]
let __exponentialBoundedFloat : Range<float> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedDouble")>]
let __exponentialBoundedDouble : Range<double> =
exponentialBounded ()
/// Construct a range which is scaled exponentially relative to the size
/// parameter and uses the full range of a data type.
[<CompiledName("ExponentialBoundedDecimal")>]
let __exponentialBoundedDecimal : Range<decimal> =
exponentialBounded ()