Skip to content

Latest commit

 

History

History
276 lines (175 loc) · 10.5 KB

File metadata and controls

276 lines (175 loc) · 10.5 KB
title description
GraphQL API
Core utility

Event handler for AWS AppSync Direct Lambda Resolver and Amplify GraphQL Transformer.

Key Features

  • Automatically parse API arguments to function arguments
  • Choose between strictly match a GraphQL field name or all of them to a function
  • Integrates with Data classes utilities{target="_blank"} to access resolver and identity information
  • Works with both Direct Lambda Resolver and Amplify GraphQL Transformer @function directive
  • Support async Python 3.8+ functions, and generators

Terminology

Direct Lambda Resolver{target="_blank"}. A custom AppSync Resolver to bypass the use of Apache Velocity Template (VTL) and automatically map your function's response to a GraphQL field.

Amplify GraphQL Transformer{target="_blank"}. Custom GraphQL directives to define your application's data model using Schema Definition Language (SDL). Amplify CLI uses these directives to convert GraphQL SDL into full descriptive AWS CloudFormation templates.

Getting started

Required resources

You must have an existing AppSync GraphQL API and IAM permissions to invoke your Lambda function. That said, there is no additional permissions to use this utility.

This is the sample infrastructure we are using for the initial examples with a AppSync Direct Lambda Resolver.

???+ tip "Tip: Designing GraphQL Schemas for the first time?" Visit AWS AppSync schema documentation{target="_blank"} for understanding how to define types, nesting, and pagination.

=== "getting_started_schema.graphql"

```typescript
--8<-- "examples/event_handler_graphql/src/getting_started_schema.graphql"
```

=== "template.yml"

```yaml hl_lines="59-60 71-72 94-95 104-105 112-113"
--8<-- "examples/event_handler_graphql/sam/template.yaml"
```

Resolver decorator

You can define your functions to match GraphQL types and fields with the app.resolver() decorator.

Here's an example where we have two separate functions to resolve getTodo and listTodos fields within the Query type. For completion, we use Scalar type utilities to generate the right output based on our schema definition.

???+ important GraphQL arguments are passed as function keyword arguments.

**Example**

The GraphQL Query `getTodo(id: "todo_id_value")` will
call `get_todo` as `get_todo(id="todo_id_value")`.

=== "getting_started_graphql_api_resolver.py"

```python hl_lines="14 20 30 32-33 42 44 55"
--8<-- "examples/event_handler_graphql/src/getting_started_graphql_api_resolver.py"
```

=== "getting_started_schema.graphql"

```typescript hl_lines="6-7"
--8<-- "examples/event_handler_graphql/src/getting_started_schema.graphql"
```

=== "getting_started_get_todo.json"

```json hl_lines="2-3"
--8<-- "examples/event_handler_graphql/src/getting_started_get_todo.json"
```

=== "getting_started_list_todos.json"

```json hl_lines="2 40 42"
--8<-- "examples/event_handler_graphql/src/getting_started_list_todos.json"
```

Scalar functions

When working with AWS AppSync Scalar types{target="_blank"}, you might want to generate the same values for data validation purposes.

For convenience, the most commonly used values are available as functions within scalar_types_utils module.

--8<-- "examples/event_handler_graphql/src/scalar_functions.py"

Here's a table with their related scalar as a quick reference:

Scalar type Scalar function Sample value
ID scalar_types_utils.make_id e916c84d-48b6-484c-bef3-cee3e4d86ebf
AWSDate scalar_types_utils.aws_date 2022-07-08Z
AWSTime scalar_types_utils.aws_time 15:11:00.189Z
AWSDateTime scalar_types_utils.aws_datetime 2022-07-08T15:11:00.189Z
AWSTimestamp scalar_types_utils.aws_timestamp 1657293060

Advanced

Nested mappings

???+ note

The following examples use a more advanced schema. These schemas differ from [initial sample infrastructure we used earlier](#required-resources).

You can nest app.resolver() decorator multiple times when resolving fields with the same return value.

=== "nested_mappings.py"

```python hl_lines="11 17 27-28 28 30 37"
--8<-- "examples/event_handler_graphql/src/nested_mappings.py"
```

=== "nested_mappings_schema.graphql"

```typescript hl_lines="6 20"
--8<-- "examples/event_handler_graphql/src/nested_mappings_schema.graphql"
```

Async functions

For Lambda Python3.8+ runtime, this utility supports async functions when you use in conjunction with asyncio.run.

--8<-- "examples/event_handler_graphql/src/async_resolvers.py"

Amplify GraphQL Transformer

Assuming you have Amplify CLI installed{target="_blank"}, create a new API using amplify add api and use the following GraphQL Schema.

--8<-- "examples/event_handler_graphql/src/amplify_graphql_transformer_schema.graphql"

Create two new basic Python functions{target="_blank"} via amplify add function.

???+ note Amplify CLI generated functions use Pipenv as a dependency manager. Your function source code is located at amplify/backend/function/your-function-name.

Within your function's folder, add Powertools as a dependency with pipenv install aws-lambda-powertools.

Use the following code for merchantInfo and searchMerchant functions respectively.

=== "graphql_transformer_merchant_info.py"

```python hl_lines="11 13 29-30 34-35 43"
--8<-- "examples/event_handler_graphql/src/graphql_transformer_merchant_info.py"
```

=== "graphql_transformer_search_merchant.py"

```python hl_lines="11 13 28-29 43 49"
--8<-- "examples/event_handler_graphql/src/graphql_transformer_search_merchant.py"
```

=== "graphql_transformer_list_locations.json"

```json hl_lines="2-7"
--8<-- "examples/event_handler_graphql/src/graphql_transformer_list_locations.json"
```

=== "graphql_transformer_common_field.json"

```json hl_lines="2 3"
--8<-- "examples/event_handler_graphql/src/graphql_transformer_common_field.json"
```

=== "graphql_transformer_find_merchant.json"

```json hl_lines="2-6"
--8<-- "examples/event_handler_graphql/src/graphql_transformer_find_merchant.json"
```

Custom data models

You can subclass AppSyncResolverEvent{target="_blank"} to bring your own set of methods to handle incoming events, by using data_model param in the resolve method.

=== "custom_models.py.py"

```python hl_lines="11 14 30-32 35-36 43 50"
--8<-- "examples/event_handler_graphql/src/custom_models.py"
```

=== "nested_mappings_schema.graphql"

```typescript hl_lines="6 20"
--8<-- "examples/event_handler_graphql/src/nested_mappings_schema.graphql"
```

=== "graphql_transformer_list_locations.json"

```json hl_lines="18-19"
 --8<-- "examples/event_handler_graphql/src/graphql_transformer_list_locations.json"
```

Split operations with Router

???+ tip Read the considerations section for trade-offs between monolithic and micro functions{target="_blank"}, as it's also applicable here.

As you grow the number of related GraphQL operations a given Lambda function should handle, it is natural to split them into separate files to ease maintenance - That's when the Router feature comes handy.

Let's assume you have split_operation.py as your Lambda function entrypoint and routes in split_operation_module.py. This is how you'd use the Router feature.

=== "split_operation_module.py"

We import **Router** instead of **AppSyncResolver**; syntax wise is exactly the same.

```python hl_lines="11 15 25-26"
--8<-- "examples/event_handler_graphql/src/split_operation_module.py"
```

=== "split_operation.py"

We use `include_router` method and include all `location` operations registered in the `router` global object.

```python hl_lines="1 11"
--8<-- "examples/event_handler_graphql/src/split_operation.py"
```

Testing your code

You can test your resolvers by passing a mocked or actual AppSync Lambda event that you're expecting.

You can use either app.resolve(event, context) or simply app(event, context).

Here's an example of how you can test your synchronous resolvers:

=== "assert_graphql_response.py"

```python hl_lines="6 26 29"
--8<-- "examples/event_handler_graphql/src/assert_graphql_response.py"
```

=== "assert_graphql_response_module.py"

```python hl_lines="17"
--8<-- "examples/event_handler_graphql/src/assert_graphql_response_module.py"
```

=== "assert_graphql_response.json"

```json hl_lines="5"
--8<-- "examples/event_handler_graphql/src/assert_graphql_response.json"
```

And an example for testing asynchronous resolvers. Note that this requires the pytest-asyncio package. This tests a specific async GraphQL operation.

???+ note Alternatively, you can continue call lambda_handler function synchronously as it'd run asyncio.run to await for the coroutine to complete.

=== "assert_async_graphql_response.py"

```python hl_lines="28"
--8<-- "examples/event_handler_graphql/src/assert_async_graphql_response.py"
```

=== "assert_async_graphql_response_module.py"

```python hl_lines="21"
--8<-- "examples/event_handler_graphql/src/assert_async_graphql_response_module.py"
```

=== "assert_async_graphql_response.json"

```json hl_lines="3 4"
--8<-- "examples/event_handler_graphql/src/assert_async_graphql_response.json"
```