Skip to content

Latest commit

 

History

History
202 lines (130 loc) · 8.05 KB

File metadata and controls

202 lines (130 loc) · 8.05 KB
title description
Validation
Utility

This utility provides JSON Schema validation for events and responses, including JMESPath support to unwrap events before validation.

Key features

  • Validate incoming event and response
  • JMESPath support to unwrap events before validation applies
  • Built-in envelopes to unwrap popular event sources payloads

Getting started

???+ tip All examples shared in this documentation are available within the project repository{target="_blank"}.

Install

!!! info "This is not necessary if you're installing Powertools via Lambda Layer{target="_blank"}"

Add aws-lambda-powertools[validation] as a dependency in your preferred tool: e.g., requirements.txt, pyproject.toml.

This will ensure you have the required dependencies before using Validation.

You can validate inbound and outbound events using validator decorator.

You can also use the standalone validate function, if you want more control over the validation process such as handling a validation error.

???+ tip "Tip: Using JSON Schemas for the first time?" Check this step-by-step tour in the official JSON Schema website{target="_blank"}.

We support any JSONSchema draft supported by [fastjsonschema](https://horejsek.github.io/python-fastjsonschema/){target="_blank"} library.

???+ warning Both validator decorator and validate standalone function expects your JSON Schema to be a dictionary, not a filename.

Validator decorator

Validator decorator is typically used to validate either inbound or functions' response.

It will fail fast with SchemaValidationError exception if event or response doesn't conform with given JSON Schema.

=== "getting_started_validator_decorator_function.py"

```python hl_lines="8 27 28 42"
--8<-- "examples/validation/src/getting_started_validator_decorator_function.py"
```

=== "getting_started_validator_decorator_schema.py"

```python hl_lines="10 12 17 19 24 26 28 44 46 51 53"
--8<-- "examples/validation/src/getting_started_validator_decorator_schema.py"
```

=== "getting_started_validator_decorator_payload.json"

```json
--8<-- "examples/validation/src/getting_started_validator_decorator_payload.json"
```

???+ note It's not a requirement to validate both inbound and outbound schemas - You can either use one, or both.

Validate function

Validate standalone function is typically used within the Lambda handler, or any other methods that perform data validation.

You can also gracefully handle schema validation errors by catching SchemaValidationError exception.

=== "getting_started_validator_standalone_function.py"

```python hl_lines="5 16 17 26"
--8<-- "examples/validation/src/getting_started_validator_standalone_function.py"
```

=== "getting_started_validator_standalone_schema.py"

```python hl_lines="7 8 10 12 17 19 24 26 28"
--8<-- "examples/validation/src/getting_started_validator_standalone_schema.py"
```

=== "getting_started_validator_standalone_payload.json"

```json
--8<-- "examples/validation/src/getting_started_validator_standalone_payload.json"
```

Unwrapping events prior to validation

You might want to validate only a portion of your event - This is what the envelope parameter is for.

Envelopes are JMESPath expressions to extract a portion of JSON you want before applying JSON Schema validation.

Here is a sample custom EventBridge event, where we only validate what's inside the detail key:

=== "getting_started_validator_unwrapping_function.py"

```python hl_lines="2 6 12"
--8<-- "examples/validation/src/getting_started_validator_unwrapping_function.py"
```

=== "getting_started_validator_unwrapping_schema.py"

```python hl_lines="9-14 23 25 28 33 36 41 44 48 51"
--8<-- "examples/validation/src/getting_started_validator_unwrapping_schema.py"
```

=== "getting_started_validator_unwrapping_payload.json"

```json
--8<-- "examples/validation/src/getting_started_validator_unwrapping_payload.json"
```

This is quite powerful because you can use JMESPath Query language to extract records from arrays, combine pipe and function expressions.

When combined, these features allow you to extract what you need before validating the actual payload.

Built-in envelopes

We provide built-in envelopes to easily extract the payload from popular event sources.

=== "unwrapping_popular_event_source_function.py"

```python hl_lines="2 7 12"
--8<-- "examples/validation/src/unwrapping_popular_event_source_function.py"
```

=== "unwrapping_popular_event_source_schema.py"

```python hl_lines="7 9 12 17 20"
--8<-- "examples/validation/src/unwrapping_popular_event_source_schema.py"
```

=== "unwrapping_popular_event_source_payload.json"

```json hl_lines="12 13"
--8<-- "examples/validation/src/unwrapping_popular_event_source_payload.json"
```

Here is a handy table with built-in envelopes along with their JMESPath expressions in case you want to build your own.

Envelope name JMESPath expression
API_GATEWAY_REST "powertools_json(body)"
API_GATEWAY_HTTP "powertools_json(body)"
SQS "Records[*].powertools_json(body)"
SNS "Records[0].Sns.Message
EVENTBRIDGE "detail"
CLOUDWATCH_EVENTS_SCHEDULED "detail"
KINESIS_DATA_STREAM "Records[*].kinesis.powertools_json(powertools_base64(data))"
CLOUDWATCH_LOGS "awslogs.powertools_base64_gzip(data)

Advanced

Validating custom formats

???+ note JSON Schema DRAFT 7 has many new built-in formats{target="_blank"} such as date, time, and specifically a regex format which might be a better replacement for a custom format, if you do have control over the schema.

JSON Schemas with custom formats like awsaccountid will fail validation. If you have these, you can pass them using formats parameter:

{
	"accountid": {
		"format": "awsaccountid",
		"type": "string"
	}
}

For each format defined in a dictionary key, you must use a regex, or a function that returns a boolean to instruct the validator on how to proceed when encountering that type.

=== "custom_format_function.py"

```python hl_lines="5 8 10 11 17 27"
--8<-- "examples/validation/src/custom_format_function.py"
```

=== "custom_format_schema.py"

```python hl_lines="7 9 12 13 17 20"
--8<-- "examples/validation/src/custom_format_schema.py"
```

=== "custom_format_payload.json"

```json hl_lines="12 13"
--8<-- "examples/validation/src/custom_format_payload.json"
```

Built-in JMESPath functions

You might have events or responses that contain non-encoded JSON, where you need to decode before validating them.

You can use our built-in JMESPath functions within your expressions to do exactly that to decode JSON Strings, base64, and uncompress gzip data.

???+ info We use these for built-in envelopes to easily to decode and unwrap events from sources like Kinesis, CloudWatch Logs, etc.