-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutils.py
312 lines (251 loc) · 9.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
import os
import shutil
import math
import time
from functools import reduce
import operator
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
######################################
# measurement functions #
######################################
count_ops = 0
count_params = 0
def get_num_gen(gen):
return sum(1 for x in gen)
def is_pruned(layer):
if hasattr(layer, 'mask'):
return True
elif hasattr(layer, 'is_pruned'):
return True
else:
return False
def is_leaf(model):
return get_num_gen(model.children()) == 0
def get_layer_info(layer):
layer_str = str(layer)
type_name = layer_str[:layer_str.find('(')].strip()
return type_name
def get_layer_param(model):
return sum([reduce(operator.mul, i.size(), 1) for i in model.parameters()])
### The input batch size should be 1 to call this function
def measure_layer(layer, x):
global count_ops, count_params
delta_ops = 0
delta_params = 0
multi_add = 1
type_name = get_layer_info(layer)
### ops_conv
if type_name in ['Conv2d', 'Conv2d_lasso']:
out_h = int((x.size()[2] + 2 * layer.padding[0] - layer.kernel_size[0]) /
layer.stride[0] + 1)
out_w = int((x.size()[3] + 2 * layer.padding[1] - layer.kernel_size[1]) /
layer.stride[1] + 1)
delta_ops = layer.in_channels * layer.out_channels * layer.kernel_size[0] * \
layer.kernel_size[1] * out_h * out_w / layer.groups * multi_add
delta_params = get_layer_param(layer)
### ops_head_conv
elif type_name in ['HeadConv']:
x_ori = x
x = F.adaptive_avg_pool2d(x, 1)
b, c, _, _ = x.size()
x = x.view(b, c)
measure_layer(layer.fc1, x)
x = layer.fc1(x)
measure_layer(layer.relu_fc1, x)
x = layer.relu_fc1(x)
measure_layer(layer.fc2, x)
x = layer.fc2(x)
measure_layer(layer.relu_fc2, x)
delta_ops = reduce(operator.mul, x.size(), 1)
delta_params = 0
x = x_ori
conv = layer.conv
out_h = int((x.size()[2] + 2 * conv.padding[0] - conv.kernel_size[0]) /
conv.stride[0] + 1)
out_w = int((x.size()[3] + 2 * conv.padding[1] - conv.kernel_size[1]) /
conv.stride[1] + 1)
delta_ops += conv.in_channels * conv.out_channels * conv.kernel_size[0] * \
conv.kernel_size[1] * out_h * out_w * layer.target_pruning_rate * multi_add
delta_params += get_layer_param(conv)
### ops_dynamic_conv
elif type_name in ['DynamicMultiHeadConv']:
measure_layer(layer.relu, x)
measure_layer(layer.norm, x)
measure_layer(layer.avg_pool, x)
for i in range(layer.heads):
measure_layer(layer.__getattr__('headconv_%1d' % i), x)
delta_ops = 0
delta_params = 0
### ops_nonlinearity
elif type_name in ['ReLU', 'ReLU6', 'Sigmoid']:
delta_ops = x.numel()
delta_params = get_layer_param(layer)
### ops_pooling
elif type_name in ['AvgPool2d', 'MaxPool2d']:
in_w = x.size()[2]
kernel_ops = layer.kernel_size * layer.kernel_size
out_w = int((in_w + 2 * layer.padding - layer.kernel_size) / layer.stride + 1)
out_h = int((in_w + 2 * layer.padding - layer.kernel_size) / layer.stride + 1)
delta_ops = x.size()[0] * x.size()[1] * out_w * out_h * kernel_ops
delta_params = get_layer_param(layer)
elif type_name in ['AdaptiveAvgPool2d']:
in_w = x.size()[2]
kernel_size = in_w
padding = 0
kernel_ops = kernel_size * kernel_size
out_w = int((in_w + 2 * padding - kernel_size) / 1 + 1)
out_h = int((in_w + 2 * padding - kernel_size) / 1 + 1)
delta_ops = x.size()[0] * x.size()[1] * out_w * out_h * kernel_ops
delta_params = get_layer_param(layer)
elif type_name in ['AdaptiveAvgPool2d']:
delta_ops = x.size()[0] * x.size()[1] * x.size()[2] * x.size()[3]
delta_params = get_layer_param(layer)
### ops_linear
elif type_name in ['Linear']:
weight_ops = layer.weight.numel() * multi_add
try:
bias_ops = layer.bias.numel()
except AttributeError:
bias_ops = 0
delta_ops = x.size()[0] * (weight_ops + bias_ops)
delta_params = get_layer_param(layer)
### ops_nothing
elif type_name in ['BatchNorm2d', 'Dropout2d', 'DropChannel', 'Dropout']:
delta_params = get_layer_param(layer)
### unknown layer type
else:
raise TypeError('unknown layer type: %s' % type_name)
count_ops += delta_ops
count_params += delta_params
return
def measure_model(model, H, W):
global count_ops, count_params
count_ops = 0
count_params = 0
data = Variable(torch.zeros(1, 3, H, W))
def should_measure(x):
return is_leaf(x) or is_pruned(x)
def modify_forward(model):
for child in model.children():
if should_measure(child):
def new_forward(m):
def lambda_forward(x):
measure_layer(m, x)
return m.old_forward(x)
return lambda_forward
child.old_forward = child.forward
child.forward = new_forward(child)
else:
modify_forward(child)
def restore_forward(model):
for child in model.children():
# leaf node
if is_leaf(child) and hasattr(child, 'old_forward'):
child.forward = child.old_forward
child.old_forward = None
else:
restore_forward(child)
modify_forward(model)
model.forward(data)
restore_forward(model)
return count_ops, count_params
######################################
# basic functions #
######################################
def load_checkpoint(args):
model_dir = os.path.join(args.savedir, 'save_models')
latest_filename = os.path.join(model_dir, 'latest.txt')
model_filename = ''
if args.evaluate is not None:
model_filename = args.evaluate
else:
if os.path.exists(latest_filename):
with open(latest_filename, 'r') as fin:
model_filename = fin.readlines()[0].strip()
loadinfo = "=> loading checkpoint from '{}'".format(model_filename)
print(loadinfo)
state = None
if os.path.exists(model_filename):
state = torch.load(model_filename, map_location='cpu')
loadinfo2 = "=> loaded checkpoint '{}' successfully".format(model_filename)
else:
loadinfo2 = "no checkpoint loaded"
print(loadinfo2)
return state
def save_checkpoint(state, epoch, root, is_best, saveID, keep_freq=10):
filename = 'checkpoint_%03d.pth.tar' % epoch
model_dir = os.path.join(root, 'save_models')
model_filename = os.path.join(model_dir, filename)
latest_filename = os.path.join(model_dir, 'latest.txt')
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# write new checkpoint
torch.save(state, model_filename)
with open(latest_filename, 'w') as fout:
fout.write(model_filename)
print("=> saved checkpoint '{}'".format(model_filename))
# update best model
if is_best:
best_filename = os.path.join(model_dir, 'model_best.pth.tar')
shutil.copyfile(model_filename, best_filename)
# remove old model
if saveID is not None and saveID % keep_freq != 0:
filename = 'checkpoint_%03d.pth.tar' % saveID
model_filename = os.path.join(model_dir, filename)
if os.path.exists(model_filename):
os.remove(model_filename)
print('=> removed checkpoint %s' % model_filename)
print('##########Time##########', time.strftime('%Y-%m-%d %H:%M:%S'))
return epoch
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch, args, batch=None,
nBatch=None, method='cosine'):
if method == 'cosine':
T_total = args.epochs * nBatch
T_cur = (epoch % args.epochs) * nBatch + batch
lr = 0.5 * args.lr * (1 + math.cos(math.pi * T_cur / T_total))
elif method == 'multistep':
if args.data in ['cifar10', 'cifar100']:
lr, decay_rate = args.lr, 0.1
if epoch >= args.epochs * 0.75:
lr *= decay_rate**2
elif epoch >= args.epochs * 0.5:
lr *= decay_rate
else:
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res