-
Notifications
You must be signed in to change notification settings - Fork 3
/
model.py
291 lines (206 loc) · 7.84 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Sequential, ModuleList, Linear, GRU, ReLU, BatchNorm1d
from dgl.nn import GINConv, NNConv, Set2Set
from dgl.nn.pytorch.glob import SumPooling
from utils import global_global_loss_, local_global_loss_
''' Feedforward neural network'''
class FeedforwardNetwork(nn.Module):
'''
3-layer feed-forward neural networks with jumping connections
Parameters
-----------
in_dim: int, Input feature size.
hid_dim: int, Hidden feature size.
Functions
-----------
forward(feat):
feat: Tensor, [N * D], input features
'''
def __init__(self, in_dim, hid_dim):
super(FeedforwardNetwork, self).__init__()
self.block = Sequential(Linear(in_dim, hid_dim),
ReLU(),
Linear(hid_dim, hid_dim),
ReLU(),
Linear(hid_dim, hid_dim),
ReLU()
)
self.jump_con = Linear(in_dim, hid_dim)
def forward(self, feat):
block_out = self.block(feat)
jump_out = self.jump_con(feat)
out = block_out + jump_out
return out
''' Unsupervised Setting '''
class GINEncoder(nn.Module):
'''
Encoder based on dgl.nn.GINConv & dgl.nn.SumPooling
Parameters
-----------
in_dim: int, Input feature size.
hid_dim: int, Hidden feature size.
n_layer: int, number of GIN layers.
Functions
-----------
forward(graph, feat):
graph: dgl.Graph,
feat: Tensor, [N * D], node features
'''
def __init__(self, in_dim, hid_dim, n_layer):
super(GINEncoder, self).__init__()
self.n_layer = n_layer
self.convs = ModuleList()
self.bns = ModuleList()
for i in range(n_layer):
if i == 0:
n_in = in_dim
else:
n_in = hid_dim
n_out = hid_dim
block = Sequential(Linear(n_in, n_out),
ReLU(),
Linear(hid_dim, hid_dim)
)
conv = GINConv(block, 'sum')
bn = BatchNorm1d(hid_dim)
self.convs.append(conv)
self.bns.append(bn)
# sum pooling
self.pool = SumPooling()
def forward(self, graph, feat):
xs = []
x = feat
for i in range(self.n_layer):
x = F.relu(self.convs[i](graph, x))
x = self.bns[i](x)
xs.append(x)
local_emb = th.cat(xs, 1) # patch-level embedding
global_emb = self.pool(graph, local_emb) # graph-level embedding
return global_emb, local_emb
class InfoGraph(nn.Module):
r"""
InfoGraph model for unsupervised setting
Parameters
-----------
in_dim: int
Input feature size.
hid_dim: int
Hidden feature size.
Functions
-----------
forward(graph):
graph: dgl.Graph
"""
def __init__(self, in_dim, hid_dim, n_layer):
super(InfoGraph, self).__init__()
self.in_dim = in_dim
self.hid_dim = hid_dim
self.n_layer = n_layer
embedding_dim = hid_dim * n_layer
self.encoder = GINEncoder(in_dim, hid_dim, n_layer)
self.local_d = FeedforwardNetwork(embedding_dim, embedding_dim) # local discriminator (node-level)
self.global_d = FeedforwardNetwork(embedding_dim, embedding_dim) # global discriminator (graph-level)
def get_embedding(self, graph):
# get_embedding function for evaluation the learned embeddings
with th.no_grad():
feat = graph.ndata['attr']
global_emb, _ = self.encoder(graph, feat)
return global_emb
def forward(self, graph):
feat = graph.ndata['attr']
graph_id = graph.ndata['graph_id']
global_emb, local_emb = self.encoder(graph, feat)
global_h = self.global_d(global_emb) # global hidden representation
local_h = self.local_d(local_emb) # local hidden representation
measure = 'JSD'
loss = local_global_loss_(local_h, global_h, graph_id, measure)
return loss
''' Semisupevised Setting '''
class NNConvEncoder(nn.Module):
'''
Encoder based on dgl.nn.NNConv & GRU & dgl.nn.set2set pooling
Parameters
-----------
in_dim: int, Input feature size.
hid_dim: int, Hidden feature size.
Functions
-----------
forward(graph, nfeat, efeat):
graph: dgl.Graph,
nfeat: Tensor, [N * D1], node features
efeat: Tensor, [E * D2], edge features
'''
def __init__(self, in_dim, hid_dim):
super(NNConvEncoder, self).__init__()
self.lin0 = Linear(in_dim, hid_dim)
# mlp for edge convolution in NNConv
block = Sequential(Linear(5, 128), ReLU(), Linear(128, hid_dim * hid_dim))
self.conv = NNConv(hid_dim, hid_dim, block, aggregator_type = 'mean', residual = False)
self.gru = GRU(hid_dim, hid_dim)
# set2set pooling
self.set2set = Set2Set(hid_dim, n_iters=3, n_layers=1)
def forward(self, graph, nfeat, efeat):
out = F.relu(self.lin0(nfeat))
h = out.unsqueeze(0)
feat_map = []
# Convolution layer number is 3
for i in range(3):
m = F.relu(self.conv(graph, out, efeat))
out, h = self.gru(m.unsqueeze(0), h)
out = out.squeeze(0)
feat_map.append(out)
out = self.set2set(graph, out)
# out: global embedding, feat_map[-1]: local embedding
return out, feat_map[-1]
class InfoGraphS(nn.Module):
'''
InfoGraph* model for semi-supervised setting
Parameters
-----------
in_dim: int
Input feature size.
hid_dim: int
Hidden feature size.
Functions
-----------
forward(graph):
graph: dgl.Graph,
unsupforward(graph):
graph: dgl.Graph
'''
def __init__(self, in_dim, hid_dim):
super(InfoGraphS, self).__init__()
self.sup_encoder = NNConvEncoder(in_dim, hid_dim)
self.unsup_encoder = NNConvEncoder(in_dim, hid_dim)
self.fc1 = Linear(2 * hid_dim, hid_dim)
self.fc2 = Linear(hid_dim, 1)
# unsupervised local discriminator and global discriminator for local-global infomax
self.unsup_local_d = FeedforwardNetwork(hid_dim, hid_dim)
self.unsup_global_d = FeedforwardNetwork(2 * hid_dim, hid_dim)
# supervised global discriminator and unsupervised global discriminator for global-global infomax
self.sup_d = FeedforwardNetwork(2 * hid_dim, hid_dim)
self.unsup_d = FeedforwardNetwork(2 * hid_dim, hid_dim)
def forward(self, graph):
nfeat = graph.ndata['attr']
efeat = graph.edata['edge_attr']
sup_global_emb, sup_local_emb = self.sup_encoder(graph, nfeat, efeat)
sup_global_pred = self.fc2(F.relu(self.fc1(sup_global_emb)))
sup_global_pred = sup_global_pred.view(-1)
return sup_global_pred
def unsup_forward(self, graph):
nfeat = graph.ndata['attr']
efeat = graph.edata['edge_attr']
graph_id = graph.ndata['graph_id']
sup_global_emb, sup_local_emb = self.sup_encoder(graph, nfeat, efeat)
unsup_global_emb, unsup_local_emb = self.unsup_encoder(graph, nfeat, efeat)
g_enc = self.unsup_global_d(unsup_global_emb)
l_enc = self.unsup_local_d(unsup_local_emb)
sup_g_enc = self.sup_d(sup_global_emb)
unsup_g_enc = self.unsup_d(unsup_global_emb)
# Calculate loss
measure = 'JSD'
unsup_loss = local_global_loss_(l_enc, g_enc, graph_id, measure)
con_loss = global_global_loss_(sup_g_enc, unsup_g_enc, measure)
return unsup_loss, con_loss