forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtree_lstm.py
132 lines (119 loc) · 4.47 KB
/
tree_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
https://arxiv.org/abs/1503.00075
"""
import time
import itertools
import networkx as nx
import numpy as np
import mxnet as mx
from mxnet import gluon
import dgl
class _TreeLSTMCellNodeFunc(gluon.HybridBlock):
def hybrid_forward(self, F, iou, b_iou, c):
iou = F.broadcast_add(iou, b_iou)
i, o, u = iou.split(num_outputs=3, axis=1)
i, o, u = i.sigmoid(), o.sigmoid(), u.tanh()
c = i * u + c
h = o * c.tanh()
return h, c
class _TreeLSTMCellReduceFunc(gluon.HybridBlock):
def __init__(self, U_iou, U_f):
super(_TreeLSTMCellReduceFunc, self).__init__()
self.U_iou = U_iou
self.U_f = U_f
def hybrid_forward(self, F, h, c):
h_cat = h.reshape((0, -1))
f = self.U_f(h_cat).sigmoid().reshape_like(h)
c = (f * c).sum(axis=1)
iou = self.U_iou(h_cat)
return iou, c
class _TreeLSTMCell(gluon.HybridBlock):
def __init__(self, h_size):
super(_TreeLSTMCell, self).__init__()
self._apply_node_func = _TreeLSTMCellNodeFunc()
self.b_iou = self.params.get('bias', shape=(1, 3 * h_size),
init='zeros')
def message_func(self, edges):
return {'h': edges.src['h'], 'c': edges.src['c']}
def apply_node_func(self, nodes):
iou = nodes.data['iou']
b_iou, c = self.b_iou.data(iou.context), nodes.data['c']
h, c = self._apply_node_func(iou, b_iou, c)
return {'h' : h, 'c' : c}
class TreeLSTMCell(_TreeLSTMCell):
def __init__(self, x_size, h_size):
super(TreeLSTMCell, self).__init__(h_size)
self._reduce_func = _TreeLSTMCellReduceFunc(
gluon.nn.Dense(3 * h_size, use_bias=False),
gluon.nn.Dense(2 * h_size))
self.W_iou = gluon.nn.Dense(3 * h_size, use_bias=False)
def reduce_func(self, nodes):
h, c = nodes.mailbox['h'], nodes.mailbox['c']
iou, c = self._reduce_func(h, c)
return {'iou': iou, 'c': c}
class ChildSumTreeLSTMCell(_TreeLSTMCell):
def __init__(self, x_size, h_size):
super(ChildSumTreeLSTMCell, self).__init__()
self.W_iou = gluon.nn.Dense(3 * h_size, use_bias=False)
self.U_iou = gluon.nn.Dense(3 * h_size, use_bias=False)
self.U_f = gluon.nn.Dense(h_size)
def reduce_func(self, nodes):
h_tild = nodes.mailbox['h'].sum(axis=1)
f = self.U_f(nodes.mailbox['h']).sigmoid()
c = (f * nodes.mailbox['c']).sum(axis=1)
return {'iou': self.U_iou(h_tild), 'c': c}
class TreeLSTM(gluon.nn.Block):
def __init__(self,
num_vocabs,
x_size,
h_size,
num_classes,
dropout,
cell_type='nary',
pretrained_emb=None,
ctx=None):
super(TreeLSTM, self).__init__()
self.x_size = x_size
self.embedding = gluon.nn.Embedding(num_vocabs, x_size)
if pretrained_emb is not None:
print('Using glove')
self.embedding.initialize(ctx=ctx)
self.embedding.weight.set_data(pretrained_emb)
self.dropout = gluon.nn.Dropout(dropout)
self.linear = gluon.nn.Dense(num_classes)
cell = TreeLSTMCell if cell_type == 'nary' else ChildSumTreeLSTMCell
self.cell = cell(x_size, h_size)
self.ctx = ctx
def forward(self, batch, h, c):
"""Compute tree-lstm prediction given a batch.
Parameters
----------
batch : dgl.data.SSTBatch
The data batch.
h : Tensor
Initial hidden state.
c : Tensor
Initial cell state.
Returns
-------
logits : Tensor
The prediction of each node.
"""
g = batch.graph
g = g.to(self.ctx)
# feed embedding
embeds = self.embedding(batch.wordid * batch.mask)
wiou = self.cell.W_iou(self.dropout(embeds))
g.ndata['iou'] = wiou * batch.mask.expand_dims(-1).astype(wiou.dtype)
g.ndata['h'] = h
g.ndata['c'] = c
# propagate
dgl.prop_nodes_topo(g,
message_func=self.cell.message_func,
reduce_func=self.cell.reduce_func,
apply_node_func=self.cell.apply_node_func)
# compute logits
h = self.dropout(g.ndata.pop('h'))
logits = self.linear(h)
return logits