forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
156 lines (137 loc) · 6.27 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import logging
import math
import os
import random
import numpy as np
import torch
import torch.cuda
from scipy.stats import t
def get_stats(array, conf_interval=False, name=None, stdout=False, logout=False):
"""Compute mean and standard deviation from an numerical array
Args:
array (array like obj): The numerical array, this array can be
convert to :obj:`torch.Tensor`.
conf_interval (bool, optional): If True, compute the confidence interval bound (95%)
instead of the std value. (default: :obj:`False`)
name (str, optional): The name of this numerical array, for log usage.
(default: :obj:`None`)
stdout (bool, optional): Whether to output result to the terminal.
(default: :obj:`False`)
logout (bool, optional): Whether to output result via logging module.
(default: :obj:`False`)
"""
eps = 1e-9
array = torch.Tensor(array)
std, mean = torch.std_mean(array)
std = std.item()
mean = mean.item()
center = mean
if conf_interval:
n = array.size(0)
se = std / (math.sqrt(n) + eps)
t_value = t.ppf(0.975, df=n-1)
err_bound = t_value * se
else:
err_bound = std
# log and print
if name is None:
name = "array {}".format(id(array))
log = "{}: {:.4f}(+-{:.4f})".format(name, center, err_bound)
if stdout:
print(log)
if logout:
logging.info(log)
return center, err_bound
def parse_args():
parser = argparse.ArgumentParser("Graph Cross Network")
parser.add_argument("--pool_ratios", nargs="+", type=float,
help="The pooling ratios used in graph cross layers")
parser.add_argument("--hidden_dim", type=int, default=96,
help="The number of hidden channels in GXN")
parser.add_argument("--cross_weight", type=float, default=1.,
help="Weight parameter used in graph cross layer")
parser.add_argument("--fuse_weight", type=float, default=1.,
help="Weight parameter for feature fusion")
parser.add_argument("--num_cross_layers", type=int, default=2,
help="The number of graph corss layers")
parser.add_argument("--readout_nodes", type=int, default=30,
help="Number of nodes for each graph after final graph pooling")
parser.add_argument("--conv1d_dims", nargs="+", type=int,
help="Number of channels in conv operations in the end of graph cross net")
parser.add_argument("--conv1d_kws", nargs="+", type=int,
help="Kernel sizes of conv1d operations")
parser.add_argument("--dropout", type=float, default=0.,
help="Dropout rate")
parser.add_argument("--embed_dim", type=int, default=1024,
help="Number of channels of graph embedding")
parser.add_argument("--final_dense_hidden_dim", type=int, default=128,
help="The number of hidden channels in final dense layers")
parser.add_argument("--batch_size", type=int, default=64,
help="Batch size")
parser.add_argument("--lr", type=float, default=1e-4,
help="Learning rate")
parser.add_argument("--weight_decay", type=float, default=0.,
help="Weight decay rate")
parser.add_argument("--epochs", type=int, default=1000,
help="Number of training epochs")
parser.add_argument("--patience", type=int, default=20,
help="Patience for early stopping")
parser.add_argument("--num_trials", type=int, default=1,
help="Number of trials")
parser.add_argument("--device", type=int, default=0,
help="Computation device id, -1 for cpu")
parser.add_argument("--dataset", type=str, default="DD",
help="Dataset used for training")
parser.add_argument("--seed", type=int, default=-1,
help="Random seed, -1 for unset")
parser.add_argument("--print_every", type=int, default=10,
help="Print train log every ? epochs, -1 for silence training")
parser.add_argument("--dataset_path", type=str, default="./datasets",
help="Path holding your dataset")
parser.add_argument("--output_path", type=str, default="./output",
help="Path holding your result files")
args = parser.parse_args()
# default value for list hyper-parameters
if not args.pool_ratios or len(args.pool_ratios) < 2:
args.pool_ratios = [0.8, 0.7]
logging.warning("No valid pool_ratios is given, "
"using default value '{}'".format(args.pool_ratios))
if not args.conv1d_dims or len(args.conv1d_dims) < 2:
args.conv1d_dims = [16, 32]
logging.warning("No valid conv1d_dims is give, "
"using default value {}".format(args.conv1d_dims))
if not args.conv1d_kws or len(args.conv1d_kws) < 1:
args.conv1d_kws = [5]
logging.warning("No valid conv1d_kws is given, "
"using default value '{}'".format(args.conv1d_kws))
# device
args.device = "cpu" if args.device < 0 else "cuda:{}".format(args.device)
if not torch.cuda.is_available():
logging.warning("GPU is not available, using CPU for training")
args.device = "cpu"
else:
logging.warning("Device: {}".format(args.device))
# random seed
if args.seed >= 0:
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
if args.device != "cpu":
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# print every
if args.print_every < 0:
args.print_every = args.epochs + 1
# path
paths = [args.output_path, args.dataset_path]
for p in paths:
if not os.path.exists(p):
os.makedirs(p)
# datasets ad-hoc
if args.dataset in ['COLLAB', 'IMDB-BINARY', 'IMDB-MULTI', 'ENZYMES']:
args.degree_as_feature = True
else:
args.degree_as_feature = False
return args