forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
270 lines (246 loc) · 11.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import dgl
from functools import partial
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import dgl.nn.pytorch as dglnn
import time
import argparse
import tqdm
from ogb.nodeproppred import DglNodePropPredDataset
from sampler import ClusterIter, subgraph_collate_fn
class GAT(nn.Module):
def __init__(self,
in_feats,
num_heads,
n_hidden,
n_classes,
n_layers,
activation,
dropout=0.):
super().__init__()
self.n_layers = n_layers
self.n_hidden = n_hidden
self.n_classes = n_classes
self.layers = nn.ModuleList()
self.num_heads = num_heads
self.layers.append(dglnn.GATConv(in_feats,
n_hidden,
num_heads=num_heads,
feat_drop=dropout,
attn_drop=dropout,
activation=activation,
negative_slope=0.2))
for i in range(1, n_layers - 1):
self.layers.append(dglnn.GATConv(n_hidden * num_heads,
n_hidden,
num_heads=num_heads,
feat_drop=dropout,
attn_drop=dropout,
activation=activation,
negative_slope=0.2))
self.layers.append(dglnn.GATConv(n_hidden * num_heads,
n_classes,
num_heads=num_heads,
feat_drop=dropout,
attn_drop=dropout,
activation=None,
negative_slope=0.2))
def forward(self, g, x):
h = x
for l, conv in enumerate(self.layers):
h = conv(g, h)
if l < len(self.layers) - 1:
h = h.flatten(1)
h = h.mean(1)
return h.log_softmax(dim=-1)
def inference(self, g, x, batch_size, device):
"""
Inference with the GAT model on full neighbors (i.e. without neighbor sampling).
g : the entire graph.
x : the input of entire node set.
The inference code is written in a fashion that it could handle any number of nodes and
layers.
"""
num_heads = self.num_heads
for l, layer in enumerate(self.layers):
if l < self.n_layers - 1:
y = th.zeros(g.num_nodes(), self.n_hidden * num_heads if l != len(self.layers) - 1 else self.n_classes)
else:
y = th.zeros(g.num_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)
sampler = dgl.dataloading.MultiLayerFullNeighborSampler(1)
dataloader = dgl.dataloading.NodeDataLoader(
g,
th.arange(g.num_nodes()),
sampler,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=args.num_workers)
for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
block = blocks[0].int().to(device)
h = x[input_nodes].to(device)
if l < self.n_layers - 1:
h = layer(block, h).flatten(1)
else:
h = layer(block, h)
h = h.mean(1)
h = h.log_softmax(dim=-1)
y[output_nodes] = h.cpu()
x = y
return y
def compute_acc(pred, labels):
"""
Compute the accuracy of prediction given the labels.
"""
return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)
def evaluate(model, g, nfeat, labels, val_nid, test_nid, batch_size, device):
"""
Evaluate the model on the validation set specified by ``val_mask``.
g : The entire graph.
inputs : The features of all the nodes.
labels : The labels of all the nodes.
val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
batch_size : Number of nodes to compute at the same time.
device : The GPU device to evaluate on.
"""
model.eval()
with th.no_grad():
pred = model.inference(g, nfeat, batch_size, device)
model.train()
return compute_acc(pred[val_nid], labels[val_nid]), compute_acc(pred[test_nid], labels[test_nid]), pred
def model_param_summary(model):
""" Count the model parameters """
cnt = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("Total Params {}".format(cnt))
#### Entry point
def run(args, device, data):
# Unpack data
train_nid, val_nid, test_nid, in_feats, labels, n_classes, g, cluster_iterator = data
labels = labels.to(device)
nfeat = g.ndata.pop('feat').to(device)
# Define model and optimizer
model = GAT(in_feats, args.num_heads, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
model_param_summary(model)
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wd)
# Training loop
avg = 0
best_eval_acc = 0
best_test_acc = 0
for epoch in range(args.num_epochs):
iter_load = 0
iter_far = 0
iter_back = 0
tic = time.time()
# Loop over the dataloader to sample the computation dependency graph as a list of
# blocks.
tic_start = time.time()
for step, cluster in enumerate(cluster_iterator):
mask = cluster.ndata.pop('train_mask')
if mask.sum() == 0:
continue
cluster.edata.pop(dgl.EID)
cluster = cluster.int().to(device)
input_nodes = cluster.ndata[dgl.NID]
batch_inputs = nfeat[input_nodes]
batch_labels = labels[input_nodes]
tic_step = time.time()
# Compute loss and prediction
batch_pred = model(cluster, batch_inputs)
batch_pred = batch_pred[mask]
batch_labels = batch_labels[mask]
loss = nn.functional.nll_loss(batch_pred, batch_labels)
optimizer.zero_grad()
tic_far = time.time()
loss.backward()
optimizer.step()
tic_back = time.time()
iter_load += (tic_step - tic_start)
iter_far += (tic_far - tic_step)
iter_back += (tic_back - tic_far)
if step % args.log_every == 0:
acc = compute_acc(batch_pred, batch_labels)
gpu_mem_alloc = th.cuda.max_memory_allocated() / 1000000 if th.cuda.is_available() else 0
print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | GPU {:.1f} MB'.format(
epoch, step, loss.item(), acc.item(), gpu_mem_alloc))
tic_start = time.time()
toc = time.time()
print('Epoch Time(s): {:.4f} Load {:.4f} Forward {:.4f} Backward {:.4f}'.format(toc - tic, iter_load, iter_far, iter_back))
if epoch >= 5:
avg += toc - tic
if epoch % args.eval_every == 0 and epoch != 0:
eval_acc, test_acc, pred = evaluate(model, g, nfeat, labels, val_nid, test_nid, args.val_batch_size, device)
model = model.to(device)
if args.save_pred:
np.savetxt(args.save_pred + '%02d' % epoch, pred.argmax(1).cpu().numpy(), '%d')
print('Eval Acc {:.4f}'.format(eval_acc))
if eval_acc > best_eval_acc:
best_eval_acc = eval_acc
best_test_acc = test_acc
print('Best Eval Acc {:.4f} Test Acc {:.4f}'.format(best_eval_acc, best_test_acc))
print('Avg epoch time: {}'.format(avg / (epoch - 4)))
return best_test_acc
if __name__ == '__main__':
argparser = argparse.ArgumentParser("multi-gpu training")
argparser.add_argument('--gpu', type=int, default=0,
help="GPU device ID. Use -1 for CPU training")
argparser.add_argument('--num-epochs', type=int, default=20)
argparser.add_argument('--num-hidden', type=int, default=128)
argparser.add_argument('--num-layers', type=int, default=3)
argparser.add_argument('--num-heads', type=int, default=8)
argparser.add_argument('--batch-size', type=int, default=32)
argparser.add_argument('--val-batch-size', type=int, default=2000)
argparser.add_argument('--log-every', type=int, default=20)
argparser.add_argument('--eval-every', type=int, default=1)
argparser.add_argument('--lr', type=float, default=0.001)
argparser.add_argument('--dropout', type=float, default=0.5)
argparser.add_argument('--save-pred', type=str, default='')
argparser.add_argument('--wd', type=float, default=0)
argparser.add_argument('--num_partitions', type=int, default=15000)
argparser.add_argument('--num-workers', type=int, default=0)
argparser.add_argument('--data-cpu', action='store_true',
help="By default the script puts all node features and labels "
"on GPU when using it to save time for data copy. This may "
"be undesired if they cannot fit in GPU memory at once. "
"This flag disables that.")
args = argparser.parse_args()
if args.gpu >= 0:
device = th.device('cuda:%d' % args.gpu)
else:
device = th.device('cpu')
# load ogbn-products data
data = DglNodePropPredDataset(name='ogbn-products')
splitted_idx = data.get_idx_split()
train_idx, val_idx, test_idx = splitted_idx['train'], splitted_idx['valid'], splitted_idx['test']
graph, labels = data[0]
labels = labels[:, 0]
print('Total edges before adding self-loop {}'.format(graph.num_edges()))
graph = dgl.remove_self_loop(graph)
graph = dgl.add_self_loop(graph)
print('Total edges after adding self-loop {}'.format(graph.num_edges()))
num_nodes = train_idx.shape[0] + val_idx.shape[0] + test_idx.shape[0]
assert num_nodes == graph.num_nodes()
mask = th.zeros(num_nodes, dtype=th.bool)
mask[train_idx] = True
graph.ndata['train_mask'] = mask
graph.in_degrees(0)
graph.out_degrees(0)
graph.find_edges(0)
cluster_iter_data = ClusterIter(
'ogbn-products', graph, args.num_partitions, args.batch_size)
cluster_iterator = DataLoader(cluster_iter_data, batch_size=args.batch_size, shuffle=True,
pin_memory=True, num_workers=4,
collate_fn=partial(subgraph_collate_fn, graph))
in_feats = graph.ndata['feat'].shape[1]
n_classes = (labels.max() + 1).item()
# Pack data
data = train_idx, val_idx, test_idx, in_feats, labels, n_classes, graph, cluster_iterator
# Run 10 times
test_accs = []
for i in range(10):
test_accs.append(run(args, device, data))
print('Average test accuracy:', np.mean(test_accs), '±', np.std(test_accs))