- Paper: https://arxiv.org/abs/1703.06103
- Author's code for entity classification: https://github.com/tkipf/relational-gcn
- Author's code for link prediction: https://github.com/MichSchli/RelationPrediction
- PyTorch 0.4.1+
- requests
- rdflib
- pandas
pip install requests torch rdflib pandas
Example code was tested with rdflib 4.2.2 and pandas 0.23.4
AIFB: accuracy 92.59% (3 runs, DGL), 95.83% (paper)
python3 entity_classify.py -d aifb --testing --gpu 0
MUTAG: accuracy 72.55% (3 runs, DGL), 73.23% (paper)
python3 entity_classify.py -d mutag --l2norm 5e-4 --n-bases 30 --testing --gpu 0
BGS: accuracy 89.66% (3 runs, DGL), 83.10% (paper)
python3 entity_classify.py -d bgs --l2norm 5e-4 --n-bases 40 --testing --gpu 0
AM: accuracy 89.73% (3 runs, DGL), 89.29% (paper)
python3 entity_classify.py -d am --n-bases=40 --n-hidden=10 --l2norm=5e-4 --testing
AIFB: accuracy avg(5 runs) 90.56%, best 94.44% (DGL)
python3 entity_classify_mp.py -d aifb --testing --gpu 0 --fanout='20,20' --batch-size 128
MUTAG: accuracy avg(10 runs) 69.41%, best 76.47% (DGL)
python3 entity_classify_mp.py -d mutag --l2norm 5e-4 --n-bases 30 --testing --gpu 0 --batch-size 64 --fanout "-1, -1" --use-self-loop --dgl-sparse --n-epochs 20 --sparse-lr 0.01 --dropout 0.5
BGS: accuracy avg(5 runs) 85.52%, best 93.10% (DGL)
python3 entity_classify_mp.py -d bgs --l2norm 5e-4 --n-bases 40 --testing --gpu 0 --fanout "-1, -1" --n-epochs=16 --batch-size=16 --dgl-sparse --lr 0.01 --sparse-lr 0.05 --dropout 0.3
AM: accuracy avg(5 runs) 88.59%, best 88.89% (DGL)
python3 entity_classify_mp.py -d am --l2norm 5e-4 --n-bases 40 --testing --gpu 0 --fanout '35,35' --batch-size 64 --n-hidden 16 --use-self-loop --n-epochs=20 --dgl-sparse --lr 0.01 --sparse-lr 0.02 --dropout 0.7
Test-bd: P3-8xlarge
OGBN-MAG accuracy 45.5 (3 runs)
python3 entity_classify_mp.py -d ogbn-mag --testing --fanout='30,30' --batch-size 1024 --n-hidden 128 --lr 0.01 --num-worker 4 --eval-batch-size 8 --low-mem --gpu 0,1,2,3 --dropout 0.7 --use-self-loop --n-bases 2 --n-epochs 3 --node-feats --dgl-sparse --sparse-lr 0.08
OGBN-MAG without node-feats 42.79
python3 entity_classify_mp.py -d ogbn-mag --testing --fanout='30,30' --batch-size 1024 --n-hidden 128 --lr 0.01 --num-worker 4 --eval-batch-size 8 --low-mem --gpu 0,1,2,3 --dropout 0.7 --use-self-loop --n-bases 2 --n-epochs 3 --dgl-sparse --sparse-lr 0.08
Test-bd: P2-8xlarge
FB15k-237: MRR 0.151 (DGL), 0.158 (paper)
python3 link_predict.py -d FB15k-237 --gpu 0 --eval-protocol raw
FB15k-237: Filtered-MRR 0.2044
python3 link_predict.py -d FB15k-237 --gpu 0 --eval-protocol filtered