-
Notifications
You must be signed in to change notification settings - Fork 2
/
Mux.cpp
147 lines (132 loc) · 4.83 KB
/
Mux.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// This file contains code from NVSim, (c) 2012-2013, Pennsylvania State University
//and Hewlett-Packard Company. See LICENSE_NVSim file in the top-level directory.
//No part of DESTINY Project, including this file, may be copied,
//modified, propagated, or distributed except according to the terms
//contained in the LICENSE file.
#include "Mux.h"
#include "global.h"
#include "formula.h"
Mux::Mux() {
// TODO Auto-generated constructor stub
initialized = false;
capForPreviousPowerCalculation = 0;
capForPreviousDelayCalculation = 0;
capNMOSPassTransistor = 0;
resNMOSPassTransistor = 0;
}
Mux::~Mux() {
// TODO Auto-generated destructor stub
}
void Mux::Initialize(int _numInput, long long _numMux, double _capLoad, double _capInputNextStage, double _minDriverCurrent){
if (initialized)
cout << "[Mux] Warning: Already initialized!" << endl;
numInput = _numInput;
numMux = _numMux;
capLoad = _capLoad;
capInputNextStage = _capInputNextStage;
minDriverCurrent = _minDriverCurrent;
if ((numInput > 1) && (numMux > 0 )) {
double minNMOSWidth = minDriverCurrent / tech->currentOnNmos[inputParameter->temperature - 300];
if (cell->memCellType == MRAM || cell->memCellType == PCRAM || cell->memCellType == memristor) {
/* Mux resistance should be small enough for voltage dividing */
double maxResNMOSPassTransistor = cell->resistanceOn * IR_DROP_TOLERANCE;
widthNMOSPassTransistor = CalculateOnResistance(tech->featureSize, NMOS, inputParameter->temperature, *tech)
* tech->featureSize / maxResNMOSPassTransistor;
if (widthNMOSPassTransistor > inputParameter->maxNmosSize * tech->featureSize) { // Change the transistor size to avoid severe IR drop
widthNMOSPassTransistor = inputParameter->maxNmosSize * tech->featureSize;
}
widthNMOSPassTransistor = MAX(MAX(widthNMOSPassTransistor,minNMOSWidth), 6 * MIN_NMOS_SIZE * tech->featureSize);
} else {
widthNMOSPassTransistor = MAX(6 * MIN_NMOS_SIZE * tech->featureSize, minNMOSWidth);
}
}
initialized = true;
}
void Mux::CalculateArea(){
if (!initialized) {
cout << "[Mux] Error: Require initialization first!" << endl;
} else {
if ((numInput > 1) && (numMux > 0 )) {
double h,w;
CalculateGateArea(INV, 1, widthNMOSPassTransistor, 0, tech->featureSize*40, *tech, &h, &w);
width = numMux * numInput * w;
height = h;
area = width * height;
} else {
height = width = area = 0;
}
}
}
void Mux::CalculateRC() {
if (!initialized) {
cout << "[Mux] Error: Require initialization first!" << endl;
} else {
if ((numInput > 1) && (numMux > 0 )) {
capNMOSPassTransistor = CalculateDrainCap(widthNMOSPassTransistor, NMOS, tech->featureSize*40, *tech);
capForPreviousPowerCalculation = capNMOSPassTransistor;
capOutput = numInput * capNMOSPassTransistor;
capForPreviousDelayCalculation = capOutput + capNMOSPassTransistor + capLoad;
resNMOSPassTransistor = CalculateOnResistance(widthNMOSPassTransistor, NMOS, inputParameter->temperature, *tech);
} else {
; /* nothing to do */
}
}
}
void Mux::CalculateLatency(double _rampInput) { //rampInput is actually useless in Mux module
if (!initialized) {
cout << "[Mux] Error: Require initialization first!" << endl;
} else {
if ((numInput > 1) && (numMux > 0 )) {
rampInput = _rampInput;
double tr;
tr = resNMOSPassTransistor * (capOutput + capLoad);
readLatency = 2.3 * tr;
writeLatency = readLatency;
} else {
readLatency = writeLatency = 0;
}
}
}
void Mux::CalculatePower() {
if (!initialized) {
cout << "[Mux] Error: Require initialization first!" << endl;
} else {
if ((numInput > 1) && (numMux > 0 )) {
leakage = 0; //TO-DO
readDynamicEnergy = (capOutput + capInputNextStage) * tech->vdd * (tech->vdd - tech->vth);
readDynamicEnergy *= numMux; //worst-case dynamic power analysis
writeDynamicEnergy = readDynamicEnergy;
} else {
readDynamicEnergy = writeDynamicEnergy = leakage = 0;
}
}
}
void Mux::PrintProperty() {
cout << "Mux Properties:" << endl;
FunctionUnit::PrintProperty();
}
Mux & Mux::operator=(const Mux &rhs) {
height = rhs.height;
width = rhs.width;
area = rhs.area;
readLatency = rhs.readLatency;
writeLatency = rhs.writeLatency;
readDynamicEnergy = rhs.readDynamicEnergy;
writeDynamicEnergy = rhs.writeDynamicEnergy;
leakage = rhs.leakage;
initialized = rhs.initialized;
numInput = rhs.numInput;
numMux = rhs.numMux;
capLoad = rhs.capLoad;
capInputNextStage = rhs.capInputNextStage;
minDriverCurrent = rhs.minDriverCurrent;
capOutput = rhs.capOutput;
widthNMOSPassTransistor = rhs.widthNMOSPassTransistor;
resNMOSPassTransistor = rhs.resNMOSPassTransistor;
capNMOSPassTransistor = rhs.capNMOSPassTransistor;
capForPreviousDelayCalculation = rhs.capForPreviousDelayCalculation;
capForPreviousPowerCalculation = rhs.capForPreviousPowerCalculation;
rampInput = rhs.rampInput;
rampOutput = rhs.rampOutput;
return *this;
}