-
Notifications
You must be signed in to change notification settings - Fork 1
/
flow_test.go
257 lines (212 loc) · 5.3 KB
/
flow_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
package flow_test
import (
"bytes"
"encoding/json"
"testing"
vecasm "github.com/gohxs/vec-benchmark/asm"
"github.com/hexasoftware/flow"
"github.com/hexasoftware/flow/internal/assert"
"github.com/hexasoftware/flow/registry"
)
func init() {
assert.Quiet = true
}
func TestInput(t *testing.T) {
a := assert.A(t)
f := flow.New()
opIn := f.In(0)
a.NotEq(opIn, nil, "input err should not be nil")
d, err := opIn.Process([]float32{2, 2, 2})
a.Eq(d, []float32{2, 2, 2}, "array should be equal")
op := f.Op("vecadd", []float32{1, 1, 1}, opIn)
_, err = op.Process([]float32{1, 2, 3})
a.Eq(err, nil, "result should not error")
a.NotEq(op, nil, "operation should not be nil")
d, err = op.Process([]float32{2, 2, 2})
a.Eq(err, nil, "should not error passing an input")
a.Eq(d, []float32{3, 3, 3}, "array should be equal")
}
func TestSerialize(t *testing.T) {
// Does not text yet
f := flow.New()
var1 := f.Var("var1", []float32{4, 4, 4})
c1 := f.Const([]float32{1, 2, 3})
c2 := f.Const([]float32{2, 2, 2})
op1 := f.Op("vecmul", // op:0 - expected: [12,16,20,24]
f.Var("vec1", []float32{4, 4, 4, 4}),
f.Op("vecadd", // op:1 - expected: [3,4,5,6]
f.Const([]float32{1, 2, 3, 4}),
f.Const([]float32{2, 2, 2, 2}),
),
)
mul1 := f.Op("vecmul", c1, op1) // op:2 - expected 12, 32, 60, 0
mul2 := f.Op("vecmul", mul1, var1) // op:3 - expected 48, 128, 240, 0
mul3 := f.Op("vecmul", c2, mul2) // op:4 - expected 96, 256, 480, 0
mul4 := f.Op("vecmul", mul3, f.In(0)) // op:5 - expected 96, 512, 1440,0
s := bytes.NewBuffer(nil)
f.Analyse(s, []float32{1, 2, 3, 4})
t.Log(s)
res, _ := mul4.Process([]float32{1, 2, 3, 4})
t.Log("Res:", res)
t.Log("Flow:\n", f)
ret := bytes.NewBuffer(nil)
e := json.NewEncoder(ret)
e.SetIndent(" ", " ")
e.Encode(f)
// Deserialize
t.Log("Flow:", ret)
}
func TestConst(t *testing.T) {
a := assert.A(t)
f := flow.New()
c := f.Const(1)
res, err := c.Process()
a.Eq(res, 1, "It should be one")
a.Eq(err, nil, "const should not error")
}
func TestOp(t *testing.T) {
a := assert.A(t)
f := flow.New()
add := f.Op("vecadd",
f.Op("vecmul",
[]float32{1, 2, 3},
[]float32{2, 2, 2},
),
[]float32{1, 2, 3},
)
res, err := add.Process()
a.Eq(err, nil)
test := []float32{3, 6, 9}
a.Eq(test, res)
}
/*
* TODO: Create variable test
func TestVariable(t *testing.T) {
a := assert.A(t)
f := flow.New()
v := f.Var("v1", 1)
res, err := v.Process()
a.Eq(err, nil)
a.Eq(res, 1)
v.Set(2)
res, err = v.Process()
a.Eq(err, nil)
a.Eq(res, 2)
}*/
// Test context
func TestCache(t *testing.T) {
a := assert.A(t)
f := flow.New()
{
r := f.Op("inc")
a.NotEq(r, nil, "should not error giving operation")
for i := 1; i < 5; i++ {
res, err := r.Process()
a.Eq(err, nil)
a.Eq(res, i)
}
}
{
var res flow.Data
inc := f.Op("inc")
add := f.Op("add", inc, inc)
res, _ = add.Process() // 1+1
assert.Eq(t, res, 2)
res, _ = add.Process() // 2+2
assert.Eq(t, res, 4)
}
}
// XXX: Create proper test
/*func TestHandler(t *testing.T) {
f, op := prepareComplex()
f.Hook(flow.Hook{
Wait: func(op flow.Operation, triggerTime time.Time) { t.Logf("[%s] Wait", op) },
Start: func(op flow.Operation, triggerTime time.Time) { t.Logf("[%s]Start", op) },
Finish: func(op flow.Operation, triggerTime time.Time, res flow.Data) { t.Logf("[%s] Finish %v", op, res) },
Error: func(op flow.Operation, triggerTime time.Time, err error) { t.Logf("[%s] Error %v", op, err) },
})
op.Process()
}*/
func TestLocalRegistry(t *testing.T) {
a := assert.A(t)
r := registry.New()
e := r.Add("test", func() string { return "" })
a.NotEq(e, nil, "registered in a local register")
f := flow.New()
f.UseRegistry(r)
op := f.Op("test")
a.NotEq(op, nil, "operation should be valid")
op = f.Op("none")
a.NotEq(op, nil, "operation should not be nil")
_, err := op.Process()
a.NotEq(err, nil, "flow should contain an error")
}
func init() {
registry.Add("vecmul", VecMul)
registry.Add("vecadd", VecAdd)
registry.Add("vecdiv", VecDiv)
registry.Add("inc", Inc)
registry.Add("add", Add)
}
func prepareComplex() (*flow.Flow, flow.Operation) {
vecsize := 5
v1 := make([]float32, vecsize)
v2 := make([]float32, vecsize)
for i := range v1 {
v1[i], v2[i] = float32(i+1), 2
}
f := flow.New()
f1 := f.Var("f1", v1)
f2 := f.Var("f2", v2)
mul := f.Op("vecmul", f1, f2) // Doubles 2,4,6,8...
add := f.Op("vecadd", mul, f2) // Sum 4,8,10,12...
mul2 := f.Op("vecmul", mul, add) // mul again
mul3 := f.Op("vecmul", mul2, f1) // mul with f1
div1 := f.Op("vecdiv", mul3, mul2) // div
return f, div1
}
func VecMul(a, b []float32) []float32 {
sz := Min(len(a), len(b))
out := make([]float32, sz)
vecasm.VecMulf32x8(a, b, out)
return out
}
func VecAdd(a, b []float32) []float32 {
sz := Min(len(a), len(b))
out := make([]float32, sz)
for i := 0; i < sz; i++ {
out[i] = a[i] + b[i]
}
return out
}
func VecDiv(a, b []float32) []float32 {
sz := Min(len(a), len(b))
out := make([]float32, sz)
for i := 0; i < sz; i++ {
out[i] = a[i] / b[i]
}
return out
}
// ScalarInt
// Every time this operator is called we increase 1
// Constructor
func Inc() func() int {
i := 0
return func() int {
i++
return i
}
}
func Add(a, b int) int {
return a + b
}
// Utils
func Min(p ...int) int {
min := p[0]
for _, v := range p[1:] {
if min < v {
min = v
}
}
return min
}