forked from LiDan456/MAD-GANs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eugenium_mmd.py
240 lines (190 loc) · 6.8 KB
/
eugenium_mmd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
'''
Code taken from: https://github.com/eugenium/mmd
(modified slightly for efficiency/PEP by Stephanie Hyland)
Python implementation of MMD and Covariance estimates for Relative MMD
Some code is based on code from Vincent Van Asch
which is based on matlab code from Arthur Gretton
Eugene Belilovsky
eugene.belilovsky@inria.fr
'''
import numpy as np
import scipy as sp
from numpy import sqrt
from sklearn.metrics.pairwise import rbf_kernel
from functools import partial
import pdb
def my_kernel(X, Y, sigma):
gamma = 1 / (2 * sigma**2)
if len(X.shape) == 2:
X_sqnorms = np.einsum('...i,...i', X, X)
Y_sqnorms = np.einsum('...i,...i', Y, Y)
XY = np.einsum('ia,ja', X, Y)
elif len(X.shape) == 3:
X_sqnorms = np.einsum('...ij,...ij', X, X)
Y_sqnorms = np.einsum('...ij,...ij', Y, Y)
XY = np.einsum('iab,jab', X, Y)
else:
pdb.set_trace()
Kxy = np.exp(-gamma*(X_sqnorms.reshape(-1, 1) - 2*XY + Y_sqnorms.reshape(1, -1)))
return Kxy
def MMD_3_Sample_Test(X, Y, Z, sigma=-1, SelectSigma=True, computeMMDs=False):
'''Performs the relative MMD test which returns a test statistic for whether Y is closer to X or than Z.
See http://arxiv.org/pdf/1511.04581.pdf
The bandwith heuristic is based on the median heuristic (see Smola,Gretton).
'''
if(sigma<0):
#Similar heuristics
if SelectSigma:
siz=np.min((1000, X.shape[0]))
sigma1=kernelwidthPair(X[0:siz], Y[0:siz]);
sigma2=kernelwidthPair(X[0:siz], Z[0:siz]);
sigma=(sigma1+sigma2)/2.
else:
siz=np.min((1000, X.shape[0]*3))
Zem=np.r_[X[0:siz/3], Y[0:siz/3], Z[0:siz/3]]
sigma=kernelwidth(Zem);
#kernel = partial(rbf_kernel, gamma=1.0/(sigma**2))
kernel = partial(my_kernel, sigma=sigma)
#kernel = partial(grbf, sigma=sigma)
Kyy = kernel(Y, Y)
Kzz = kernel(Z, Z)
Kxy = kernel(X, Y)
Kxz = kernel(X, Z)
Kyynd = Kyy-np.diag(np.diagonal(Kyy))
Kzznd = Kzz-np.diag(np.diagonal(Kzz))
m = Kxy.shape[0];
n = Kyy.shape[0];
r = Kzz.shape[0];
u_yy=np.sum(Kyynd)*( 1./(n*(n-1)) )
u_zz=np.sum(Kzznd)*( 1./(r*(r-1)) )
u_xy=np.sum(Kxy)/(m*n)
u_xz=np.sum(Kxz)/(m*r)
#Compute the test statistic
t=u_yy - 2.*u_xy - (u_zz-2.*u_xz)
Diff_Var, Diff_Var_z2, data=MMD_Diff_Var(Kyy, Kzz, Kxy, Kxz)
pvalue=sp.stats.norm.cdf(-t/np.sqrt((Diff_Var)))
# pvalue_z2=sp.stats.norm.cdf(-t/np.sqrt((Diff_Var_z2)))
tstat=t/sqrt(Diff_Var)
if(computeMMDs):
Kxx = kernel(X, X)
Kxxnd = Kxx-np.diag(np.diagonal(Kxx))
u_xx=np.sum(Kxxnd)*( 1./(m*(m-1)) )
MMDXY=u_xx+u_yy-2.*u_xy
MMDXZ=u_xx+u_zz-2.*u_xz
else:
MMDXY=None
MMDXZ=None
return pvalue, tstat, sigma, MMDXY, MMDXZ
def MMD_Diff_Var(Kyy, Kzz, Kxy, Kxz):
'''
Compute the variance of the difference statistic MMDXY-MMDXZ
See http://arxiv.org/pdf/1511.04581.pdf Appendix for derivations
'''
m = Kxy.shape[0];
n = Kyy.shape[0];
r = Kzz.shape[0];
Kyynd = Kyy-np.diag(np.diagonal(Kyy));
Kzznd = Kzz-np.diag(np.diagonal(Kzz));
u_yy=np.sum(Kyynd)*( 1./(n*(n-1)) );
u_zz=np.sum(Kzznd)*( 1./(r*(r-1)) );
u_xy=np.sum(Kxy)/(m*n);
u_xz=np.sum(Kxz)/(m*r);
#compute zeta1
t1=(1./n**3)*np.sum(Kyynd.T.dot(Kyynd))-u_yy**2;
t2=(1./(n**2*m))*np.sum(Kxy.T.dot(Kxy))-u_xy**2;
t3=(1./(n*m**2))*np.sum(Kxy.dot(Kxy.T))-u_xy**2;
t4=(1./r**3)*np.sum(Kzznd.T.dot(Kzznd))-u_zz**2;
t5=(1./(r*m**2))*np.sum(Kxz.dot(Kxz.T))-u_xz**2;
t6=(1./(r**2*m))*np.sum(Kxz.T.dot(Kxz))-u_xz**2;
t7=(1./(n**2*m))*np.sum(Kyynd.dot(Kxy.T))-u_yy*u_xy;
t8=(1./(n*m*r))*np.sum(Kxy.T.dot(Kxz))-u_xz*u_xy;
t9=(1./(r**2*m))*np.sum(Kzznd.dot(Kxz.T))-u_zz*u_xz;
zeta1=(t1+t2+t3+t4+t5+t6-2.*(t7+t8+t9));
zeta2=(1/m/(m-1))*np.sum((Kyynd-Kzznd-Kxy.T-Kxy+Kxz+Kxz.T)**2)-(u_yy - 2.*u_xy - (u_zz-2.*u_xz))**2;
data=dict({'t1':t1,
't2':t2,
't3':t3,
't4':t4,
't5':t5,
't6':t6,
't7':t7,
't8':t8,
't9':t9,
'zeta1':zeta1,
'zeta2':zeta2,
})
#TODO more precise version for zeta2
# xx=(1/m^2)*sum(sum(Kxxnd.*Kxxnd))-u_xx^2;
# yy=(1/n^2)*sum(sum(Kyynd.*Kyynd))-u_yy^2;
#xy=(1/(n*m))*sum(sum(Kxy.*Kxy))-u_xy^2;
#xxy=(1/(n*m^2))*sum(sum(Kxxnd*Kxy))-u_xx*u_xy;
#yyx=(1/(n^2*m))*sum(sum(Kyynd*Kxy'))-u_yy*u_xy;
#zeta2=(xx+yy+xy+xy-2*(xxy+xxy +yyx+yyx))
Var=(4.*(m-2)/(m*(m-1)))*zeta1;
Var_z2=Var+(2./(m*(m-1)))*zeta2;
return Var, Var_z2, data
def grbf(x1, x2, sigma):
'''Calculates the Gaussian radial base function kernel'''
n, nfeatures = x1.shape
m, mfeatures = x2.shape
k1 = np.sum((x1*x1), 1)
q = np.tile(k1, (m, 1)).transpose()
del k1
k2 = np.sum((x2*x2), 1)
r = np.tile(k2.T, (n, 1))
del k2
h = q + r
del q, r
# The norm
h = h - 2*np.dot(x1, x2.transpose())
h = np.array(h, dtype=float)
return np.exp(-1.*h/(2.*pow(sigma, 2)))
def kernelwidthPair(x1, x2):
'''Implementation of the median heuristic. See Gretton 2012
Pick sigma such that the exponent of exp(- ||x-y|| / (2*sigma2)),
in other words ||x-y|| / (2*sigma2), equals 1 for the median distance x
and y of all distances between points from both data sets X and Y.
'''
n, nfeatures = x1.shape
m, mfeatures = x2.shape
k1 = np.sum((x1*x1), 1)
q = np.tile(k1, (m, 1)).transpose()
del k1
k2 = np.sum((x2*x2), 1)
r = np.tile(k2, (n, 1))
del k2
h= q + r
del q, r
# The norm
h = h - 2*np.dot(x1, x2.transpose())
h = np.array(h, dtype=float)
mdist = np.median([i for i in h.flat if i])
sigma = sqrt(mdist/2.0)
if not sigma: sigma = 1
return sigma
def kernelwidth(Zmed):
'''Alternative median heuristic when we cant partition the points
'''
m= Zmed.shape[0]
k1 = np.expand_dims(np.sum((Zmed*Zmed), axis=1), 1)
q = np.kron(np.ones((1, m)), k1)
r = np.kron(np.ones((m, 1)), k1.T)
del k1
h= q + r
del q, r
# The norm
h = h - 2.*Zmed.dot(Zmed.T)
h = np.array(h, dtype=float)
mdist = np.median([i for i in h.flat if i])
sigma = sqrt(mdist/2.0)
if not sigma: sigma = 1
return sigma
def MMD_unbiased(Kxx, Kyy, Kxy):
#The estimate when distribution of x is not equal to y
m = Kxx.shape[0]
n = Kyy.shape[0]
t1 = (1./(m*(m-1)))*np.sum(Kxx - np.diag(np.diagonal(Kxx)))
t2 = (2./(m*n)) * np.sum(Kxy)
t3 = (1./(n*(n-1)))* np.sum(Kyy - np.diag(np.diagonal(Kyy)))
MMDsquared = (t1-t2+t3)
return MMDsquared