-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrace_logm.m
94 lines (88 loc) · 3.17 KB
/
trace_logm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
function cvx_optval = trace_logm(X,C,m,k,apx)
%TRACE_LOGM Trace of logarithm
% TRACE_LOGM(X) returns trace(logm(X)) where X is a positive definite
% matrix.
% TRACE_LOGM(X,C) returns trace(C*logm(X)) where C is a positive
% semidefinite matrix of the same size as X.
%
% Disciplined convex programming information:
% TRACE_LOGM(X,C) is concave in X, provided C is a (fixed) positive
% semidefinite matrix.
% This function implements the semidefinite programming approximation
% given in the reference below.
%
% Parameters m and k control the accuracy of this approximation:
% m is the number of quadrature nodes to use and k the number of
% square-roots to take. See reference for more details.
% Default (m,k) = (3,3).
%
% Parameter apx indicates which approximation r of logm(X) to use:
% - apx = +1: Upper approximation (logm(X) <= r(X))
% - apx = -1: Lower approximation (r(X) <= logm(X))
% - apx = 0 (Default): Pade approximation (neither upper nor lower),
% but slightly better accuracy than apx=+1 or -1.
% The upper and lower approximation are based on rational functions
% derived from Gauss-Radau quadrature, see documentation in the 'doc'
% folder.
%
% REQUIRES: op_rel_entr_epi_cone
% Implementation uses trace(C*logm(X)) = -trace(C*D_{op}(I||X))
% where D_{op} is the operator relative entropy:
% D_{op}(X||Y) = X^{1/2}*logm(X^{1/2} Y^{-1} X^{1/2})*X^{1/2}
%
%AUTHORS
% Hamza Fawzi, James Saunderson and Pablo A. Parrilo
%
%REFERENCE
% This code is based on the paper: "Semidefinite approximations of matrix
% logarithm" by Hamza Fawzi, James Saunderson and Pablo A. Parrilo
if nargin < 1
error('Not enough input arguments');
end
if ~ismatrix(X) || size(X,1) ~= size(X,2)
error('X must be a square matrix');
end
if nargin < 2 || numel(C) == 0
C = eye(size(X,1));
else
if size(C,1) ~= size(C,2) || size(C,1) ~= size(X,1)
error('C must be a positive semidefinite matrix of the same size as X');
end
C = (C+C')/2;
e = eig(C);
tol = 1e-9;
if min(e) < -tol
error('C must be positive semidefinite');
end
end
if nargin == 2
m = 3;
k = 3;
end
if nargin < 5
% By default use Pade approximant
apx = 0;
end
if isnumeric(X)
cvx_optval = -quantum_rel_entr(C,X)+quantum_rel_entr(C,eye(size(C,1)));
elseif cvx_isconstant(X)
cvx_optval = cvx(trace_logm(cvx_constant(X),C));
elseif cvx_isaffine(X)
n = size(X,1);
iscplx = ~isreal(X) || ~isreal(C);
cvx_begin
if iscplx
variable TAU(n,n) hermitian
else
variable TAU(n,n) symmetric
end
% Since trace_logm(X,C) = -tr[C*D_{op}(I||X)], to get an
% upper/lower bound (resp.) on trace_logm, we need a lower/upper
% bound (resp.) on D_{op}. That's why we use -apx and not apx
{eye(n),X,TAU} == op_rel_entr_epi_cone(n,iscplx,m,k,eye(n),-apx); % -logm(X) <= TAU
maximize -trace(C*TAU)
cvx_end
else
error('Disciplined convex programming error:\n The input has to be an affine expression');
end
end