-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPajor vs Glmer Simulation Results.Rmd
373 lines (273 loc) · 11.5 KB
/
Pajor vs Glmer Simulation Results.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
---
title: "Pajor vs Glmer Simulation Results"
author: "Hillary Heiling"
date: "October 11, 2019"
output: html_document
---
## Description of Pajor Method
Paper:
Pajor, Anna. Estimating the Marginal Likelihood Using the Arithmetic Mean Identity. Bayesian Anal. 12 (2017), no. 1, 261--287. doi:10.1214/16-BA1001. https://projecteuclid.org/euclid.ba/1459772735
### Notation
$\theta$ = random effects
$f(y|\beta, \gamma, X, \theta)$ = likelihood of y given fixed and random effect parameters, the covariates, and the draws of the random effects
$p(\theta)$ = prior, standard MVN
$s(\theta)$ = importance function
$A$ = subset of the parameter space of $\theta$
$P(A|y)$ = posterior probability of being in subset A
Suggestion by author: Let $ P(A|y) = 1 $ such that we restrict ourselves to the range (min, max) of the posterior samples for each element of the posterior.
### Regular Corrected Arithmetic Mean (CAM) Formula
$$ f(y) = \frac{1}{P(A|y)} \int_\Theta f(y|\beta,\gamma, X, \theta) I_A(\theta) p(\theta) d\theta $$
Draws of $\theta$ from prior $(\theta)$. The $I_A(\theta)$ function is the indicator function of the draws of $\theta$ falling into the region of A
### Importance Sample version of CAM (IS CAM) Formula
$$ f(y|\beta, \gamma, X) = \frac{1}{P(A|y)} \int_\Theta f(y|\beta, \gamma, X, \theta) I_A(\theta) \frac{p(\theta)}{s(\theta)} s(\theta) d\theta $$
Draws of $\theta$ from importance function $s(\theta)$
### IS CAME Estimate
$$ f(y | \beta, \gamma, X) \approx \prod_{k=1}^d \left ( \frac{1}{M} \sum_{m=1}^M \left ( \prod_{i \in k} f(y|\beta, \gamma, X, \theta_{km}) \right ) I_A(\theta_{km}) \frac{p(\theta_{km})}{s_k(\theta_{km})} \right ) $$
$$ log(f(y | \beta, \gamma, X)) \approx \sum_{k=1}^d log \left ( \frac{1}{M} \sum_{m=1}^M \left ( \prod_{i \in k} f(y|\beta, \gamma, X, \theta_{km}) \right ) I_A(\theta_{km}) \frac{p(\theta_{km})}{s_k(\theta_{km})} \right ) $$
Draws of $\theta_{km}$ from the importance sampling function: group-specific, with mean = posterior mean for group k, and covariance = posterior covariance for group k.
When posterior from gibbs sampling, thinned samples for calculation of posterior covariance.
## Pajor vs Glmer Simulation Results
Simulated Data:
* N = 500
* K = 5
* Random effect sd = {0.5, 1.0, 2.0}
* Random intercept + 2 random slopes
* Each sd situation repeated 100 times
Number of draws from the posterior: 10^4
Number of draws from the importance function for each group: M = {10^4, 10^5, 3*10^5}
Value calculated: (ll_Pajor - ll_glmer) / ll_glmer
```{r, echo=FALSE}
load("sim_table2_Pajor_output.RData")
out_1 = output
s_l = 100
```
Boxplots of results:
```{r, echo=FALSE}
par(mfrow = c(1,2))
boxplot(out_1[1:s_l,1], out_1[1:s_l,2], out_1[1:s_l,3], names = c("M 10^4", "M 10^5", "M 3x10^5"),
main = "Results for SD = 0.5",
ylab = "(ll_Pajor - ll_glmer)/ll_glmer", ylim = c(0, 1.5))
boxplot(out_1[(s_l+1):200,1], out_1[(s_l+1):200,2], out_1[(s_l+1):200,3],
names = c("M 10^4", "M 10^5", "M 3x10^5"),
main = "Results for SD = 1.0",
ylab = "(ll_Pajor - ll_glmer)/ll_glmer", ylim = c(0, 1.5))
```
Further examination of SD = 0.5 situation:
```{r, echo=FALSE}
boxplot(out_1[1:s_l,1], out_1[1:s_l,2], out_1[1:s_l,3], names = c("M 10^4", "M 10^5", "M 3x10^5"),
main = "Results for SD = 0.5",
ylab = "(ll_Pajor - ll_glmer)/ll_glmer", ylim = c(0, 0.25))
```
## Diagnostic Output
```{r, echo=FALSE}
load("glmer_Pajor_diagnostics.RData")
diagnostic = output
# d_out = diagnotic output
# sd_ranef = 0.5
d_out1 = diagnostic[1:100]
# sd_ranef = 1.0
d_out2 = diagnostic[101:200]
# Parameters
d = 5
q = 3
```
### Acceptance Rates - All
Acceptance rates for sd_ranef = 0.5
```{r, echo=FALSE}
library(stringr)
# Acceptance rates for sd_ranef = 0.5
acc_rate1 = matrix(0, nrow = 100, ncol = d*q)
vars_q = rep(c("(Intercept)","X1","X2"), each = d)
grp = rep(1:5, times = q)
colnames(acc_rate1) = str_c(vars_q, ":", grp)
for(i in 1:100){
gibbs_acc_rate = d_out1[[i]]$gibbs_accept_rate
rate_vec = c(gibbs_acc_rate[,1], gibbs_acc_rate[,2], gibbs_acc_rate[,3])
acc_rate1[i,] = matrix(rate_vec, nrow = 1)
}
```
```{r, echo=FALSE}
par(mfrow = c(1,3))
boxplot(acc_rate1[,1], acc_rate1[,2], acc_rate1[,3], acc_rate1[,4], acc_rate1[,5],
names = colnames(acc_rate1)[1:5],
main = "Intercept: Accept Rates for SD = 0.5",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate1[,6], acc_rate1[,7], acc_rate1[,8], acc_rate1[,9], acc_rate1[,10],
names = colnames(acc_rate1)[6:10],
main = "X1: Accept Rates for SD = 0.5",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate1[,11], acc_rate1[,12], acc_rate1[,13], acc_rate1[,14], acc_rate1[,15],
names = colnames(acc_rate1)[11:15],
main = "X2: Accept Rates for SD = 0.5",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
```
Acceptance rates for sd_ranef = 1.0
```{r, echo=FALSE}
# Acceptance rates for sd_ranef = 1.0
acc_rate2 = matrix(0, nrow = 100, ncol = d*q)
vars_q = rep(c("(Intercept)","X1","X2"), each = d)
grp = rep(1:5, times = q)
colnames(acc_rate2) = str_c(vars_q, ":", grp)
for(i in 1:100){
gibbs_acc_rate = d_out2[[i]]$gibbs_accept_rate
rate_vec = c(gibbs_acc_rate[,1], gibbs_acc_rate[,2], gibbs_acc_rate[,3])
acc_rate2[i,] = matrix(rate_vec, nrow = 1)
}
full_accept_rates_sd1 = acc_rate2
```
```{r, echo=FALSE}
par(mfrow = c(1,3))
boxplot(acc_rate2[,1], acc_rate2[,2], acc_rate2[,3], acc_rate2[,4], acc_rate2[,5],
names = colnames(acc_rate2)[1:5],
main = "Intercept: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate2[,6], acc_rate2[,7], acc_rate2[,8], acc_rate2[,9], acc_rate2[,10],
names = colnames(acc_rate2)[6:10],
main = "X1: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate2[,11], acc_rate2[,12], acc_rate2[,13], acc_rate2[,14], acc_rate2[,15],
names = colnames(acc_rate2)[11:15],
main = "X2: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
```
### Acceptance Rates - Percent Difference for ll_Pajor vs ll_glmer > 10%
Acceptance rates for sd_ranef = 0.5
```{r, echo=FALSE}
# Acceptance rates for sd_ranef = 0.5
acc_rate1 = matrix(0, nrow = 100, ncol = d*q)
vars_q = rep(c("(Intercept)","X1","X2"), each = d)
grp = rep(1:5, times = q)
colnames(acc_rate1) = str_c(vars_q, ":", grp)
for(i in 1:100){
gibbs_acc_rate = d_out1[[i]]$gibbs_accept_rate
ll_pdif = d_out1[[i]]$ll_pdif
rate_vec = c(gibbs_acc_rate[,1], gibbs_acc_rate[,2], gibbs_acc_rate[,3])
if(any(ll_pdif > 0.1)){
rate_vec2 = rate_vec
}else{
rate_vec2 = rep(NA, times = d*q)
}
acc_rate1[i,] = matrix(rate_vec2, nrow = 1)
}
```
```{r, echo=FALSE}
par(mfrow = c(1,3))
boxplot(acc_rate1[,1], acc_rate1[,2], acc_rate1[,3], acc_rate1[,4], acc_rate1[,5],
names = colnames(acc_rate1)[1:5],
main = "Intercept: Accept Rates for SD = 0.5",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate1[,6], acc_rate1[,7], acc_rate1[,8], acc_rate1[,9], acc_rate1[,10],
names = colnames(acc_rate1)[6:10],
main = "X1: Accept Rates for SD = 0.5",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate1[,11], acc_rate1[,12], acc_rate1[,13], acc_rate1[,14], acc_rate1[,15],
names = colnames(acc_rate1)[11:15],
main = "X2: Accept Rates for SD = 0.5",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
```
Acceptance rates for sd_ranef = 1.0
```{r, echo=FALSE}
# Acceptance rates for sd_ranef = 1.0
acc_rate2 = matrix(0, nrow = 100, ncol = d*q)
vars_q = rep(c("(Intercept)","X1","X2"), each = d)
grp = rep(1:5, times = q)
colnames(acc_rate2) = str_c(vars_q, ":", grp)
for(i in 1:100){
gibbs_acc_rate = d_out2[[i]]$gibbs_accept_rate
ll_pdif = d_out2[[i]]$ll_pdif
rate_vec = c(gibbs_acc_rate[,1], gibbs_acc_rate[,2], gibbs_acc_rate[,3])
if(any(ll_pdif > 0.1)){
rate_vec2 = rate_vec
}else{
rate_vec2 = rep(NA, times = d*q)
}
acc_rate2[i,] = matrix(rate_vec2, nrow = 1)
}
```
```{r, echo=FALSE}
par(mfrow = c(1,3))
boxplot(acc_rate2[,1], acc_rate2[,2], acc_rate2[,3], acc_rate2[,4], acc_rate2[,5],
names = colnames(acc_rate2)[1:5],
main = "Intercept: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate2[,6], acc_rate2[,7], acc_rate2[,8], acc_rate2[,9], acc_rate2[,10],
names = colnames(acc_rate2)[6:10],
main = "X1: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate2[,11], acc_rate2[,12], acc_rate2[,13], acc_rate2[,14], acc_rate2[,15],
names = colnames(acc_rate2)[11:15],
main = "X2: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
```
### Acceptance Rates - Percent Difference for ll_Pajor vs ll_glmer > 30%
Acceptance rates for sd_ranef = 1.0
```{r, echo=FALSE}
# Acceptance rates for sd_ranef = 1.0
acc_rate2 = matrix(0, nrow = 100, ncol = d*q)
vars_q = rep(c("(Intercept)","X1","X2"), each = d)
grp = rep(1:5, times = q)
colnames(acc_rate2) = str_c(vars_q, ":", grp)
for(i in 1:100){
gibbs_acc_rate = d_out2[[i]]$gibbs_accept_rate
ll_pdif = d_out2[[i]]$ll_pdif
rate_vec = c(gibbs_acc_rate[,1], gibbs_acc_rate[,2], gibbs_acc_rate[,3])
if(any(ll_pdif > 0.3)){
rate_vec2 = rate_vec
}else{
rate_vec2 = rep(NA, times = d*q)
}
acc_rate2[i,] = matrix(rate_vec2, nrow = 1)
}
```
```{r, echo=FALSE}
par(mfrow = c(1,3))
boxplot(acc_rate2[,1], acc_rate2[,2], acc_rate2[,3], acc_rate2[,4], acc_rate2[,5],
names = colnames(acc_rate2)[1:5],
main = "Intercept: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate2[,6], acc_rate2[,7], acc_rate2[,8], acc_rate2[,9], acc_rate2[,10],
names = colnames(acc_rate2)[6:10],
main = "X1: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate2[,11], acc_rate2[,12], acc_rate2[,13], acc_rate2[,14], acc_rate2[,15],
names = colnames(acc_rate2)[11:15],
main = "X2: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
```
### Acceptance Rates - Percent Difference for ll_Pajor vs ll_glmer < 5%
Acceptance rates for sd_ranef = 1.0
```{r, echo=FALSE}
# Acceptance rates for sd_ranef = 1.0
acc_rate2 = matrix(0, nrow = 100, ncol = d*q)
vars_q = rep(c("(Intercept)","X1","X2"), each = d)
grp = rep(1:5, times = q)
colnames(acc_rate2) = str_c(vars_q, ":", grp)
for(i in 1:100){
gibbs_acc_rate = d_out2[[i]]$gibbs_accept_rate
ll_pdif = d_out2[[i]]$ll_pdif
rate_vec = c(gibbs_acc_rate[,1], gibbs_acc_rate[,2], gibbs_acc_rate[,3])
if(any(ll_pdif < 0.05)){
rate_vec2 = rate_vec
}else{
rate_vec2 = rep(NA, times = d*q)
}
acc_rate2[i,] = matrix(rate_vec2, nrow = 1)
}
```
```{r, echo=FALSE}
par(mfrow = c(1,3))
boxplot(acc_rate2[,1], acc_rate2[,2], acc_rate2[,3], acc_rate2[,4], acc_rate2[,5],
names = colnames(acc_rate2)[1:5],
main = "Intercept: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate2[,6], acc_rate2[,7], acc_rate2[,8], acc_rate2[,9], acc_rate2[,10],
names = colnames(acc_rate2)[6:10],
main = "X1: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
boxplot(acc_rate2[,11], acc_rate2[,12], acc_rate2[,13], acc_rate2[,14], acc_rate2[,15],
names = colnames(acc_rate2)[11:15],
main = "X2: Accept Rates for SD = 1.0",
ylab = "gibbs accept_rate", ylim = c(0, 1.0))
```
The End
The End